Funciones abiertas y cerradas

Funciones abiertas y cerradas

En topología, una función abierta es una función entre dos espacios topológicos cuando la imagen de un conjunto abierto es un conjunto abierto. Es decir, una función f: XY es abierta si para cualquier conjunto abierto U en X, la imagen f(U) es abierta en Y. Asimismo, una función cerrada es cuando la imagen de un conjunto cerrado es un conjunto cerrado.

Obsérvese que ni las funciones abiertas ni las cerradas requieren ser continuas. Aunque sus definiciones parecen naturales, las funciones abiertas y cerradas son mucho menos importantes que las funciones continuas. Una función f: XY es continua si la preimagen de cualquier conjunto abierto de Y es abierto en X, es decir: si la preimagen de cada conjunto cerrado de Y es cerrado en X. Deberá cumplir que es biunívoca, continua y cerrada.

Ejemplos

Cada homeomorfismo es abierto, cerrado, y continuo. De hecho, una función continua biyectiva es un homeomorfismo si es abierta, o equivalentemente, si es cerrada.

Si Y tiene la topología discreta (es decir todos los subconjuntos son abiertos y cerrados) entonces cada función f: XY es abierta y cerrada (pero no necesariamente continua).

Siempre que tengamos un producto de espacios topológicos X = ΠXi, entonces las proyecciones naturales pi: XXi son abiertas (así como continuas). Puesto que las proyecciones de los fibrados y cubrimientos son localmente proyecciones naturales de los productos, éstos son también funciones abiertas (nótese que las proyecciones del producto no necesitan ser cerradas, considérese por ejemplo la proyección p1: R ² → R en el primer componente; A = {(x,1/x): x ≠ 0} es cerrado en R², pero p1(A) = R -{0} que no es cerrado).

A cada punto de la circunferencia unidad podemos asociar el ángulo que forma el eje X positivo con el radio que une dicho punto con el origen. Esta función de la circunferencia unidad al intervalo semi-abierto [0, 2π) es biyectiva, abierta, y cerrada, pero no continua. Esto muestra que la imagen de un espacio compacto bajo una función abierta o cerrada no necesita ser compacta. También obsérvese que si consideramos esto como función de la circunferencia unidad a los números reales, entonces no es ni abierto ni cerrado. Especificar el codominio es esencial.

La función f: RR con f(x) = x² es continua y cerrada, pero no abierta.

La función parte entera de R a Z es abierta y cerrada (porque Z tiene la topología discreta). Este ejemplo muestra que la imagen de un espacio conexo bajo una función abierta o cerrada no necesita ser conexa.

Hechos y teoremas

Una función f: XY es abierta sii

para cada x en X y para cada vecindad u entorno U de x (por pequeña que sea), existe una vecindad V de f(x) tal que Vf(U).

Una función f: XY es cerrada sii

siempre que (xα) sea una red en X tal que (f (xα)) tiene límite y, entonces (xα) tiene una sub red que converja hacia una preimagen de y.

La composición de dos funciones abiertas es a su vez abierta; la composición de dos funciones cerradas es cerrada a su vez.

Un función biyectiva es abierta si y solamente si es cerrada. La inversa de una función continua biyectiva es una función biyectiva abierta/cerrada (y viceversa).

Sea f: XY una función continua que sea abierta o cerrada. Entonces

  • si f es una sobreyección, entonces es una función cociente,
  • si f es una inyección, entonces es una inmersión topológica, y
  • si f es una biyección, entonces es un homeomorfismo.

En los primeros dos casos, el ser abierto o cerrado es simplemente una condición suficiente para que el resultado se siga. En el tercer caso es necesario también.

Un resultado muy útil con respecto a las funciones cerradas es el lema de la función cerrada: cada función continua f: XY desde un espacio compacto X a un espacio de Hausdorff Y es cerrada. Una variante de este resultado establece que si una función continua entre espacios localmente compactos de Hausdorff es propia (es decir las preimágenes de conjuntos compactos son compactas), entonces también es cerrada.

En análisis funcional, el teorema de la función abierta establece que cada operador lineal continuo sobreyectivo entre espacios de Banach es una función abierta.

En análisis complejo, el, idénticamente nombrado, teorema de la función abierta establece que cada función holomorfa no-constante definida en un subconjunto abierto conexo del plano complejo es una función abierta.

El teorema de la invariancia del dominio establece que una función continua y localmente inyectiva entre dos variedades topológicas n-dimensionales deben ser abierta.


Wikimedia foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Mira otros diccionarios:

  • Funciones abiertas y cerradas — En topología, una función abierta es una función entre dos espacios topológicos que mapea conjuntos abiertos en conjuntos abiertos. Es decir, una función f: X → Y es abierta si para cualquier conjunto abierto U en X, la imagen f …   Enciclopedia Universal

  • Politopo — Saltar a navegación, búsqueda En geometría politopo significa, en primer lugar, la generalización a cualquier dimensión de un polígono bidimensional, o un poliedro tridimensional. Además, este término es utilizado en varios conceptos matemáticos… …   Wikipedia Español

  • Hidrocarburo — Refinería en California. Algu …   Wikipedia Español

  • Reacción adversa a medicamento — Saltar a navegación, búsqueda Reacción Adversa a Medicamentos, cuyo acrónimo es RAM, es «cualquier respuesta a un medicamento que sea nociva y no intencionada, y que tenga lugar a dosis que se apliquen normalmente en el ser humano para la… …   Wikipedia Español

  • Moldeo por inyección — Máquina de inyección de plástico. En ingeniería, el moldeo por inyección es un proceso semicontinuo que consiste en inyectar un …   Wikipedia Español

  • Facultad de Ciencias Sociales (UBA) — Saltar a navegación, búsqueda Facultad de Ciencias Sociales Localización Ciudad de Buenos Aires …   Wikipedia Español

  • tilde — tilde1 1. Se llama tilde tanto al acento gráfico como al rasgo o trazo pequeño que forma parte de algunas letras, como la ç, la ñ, la t, etc. En ambos casos admite los dos géneros, aunque hoy se usa casi exclusivamente en femenino: «Funciona… …   Diccionario panhispánico de dudas

  • Electricidad — Este artículo o sección puede ser demasiado extenso(a). Algunos navegadores pueden tener dificultades al mostrar este artículo. Por favor, considera separar cada sección por artículos independientes, y luego resumir las secciones presentes en… …   Wikipedia Español

  • Buceo — «Buzo» redirige aquí. Para la prenda de vestir, véase Chándal. Buceando en María la Gorda, Cuba …   Wikipedia Español

  • Colisión (hash) — En informática, una colisión de hash es una situación que se produce cuando dos entradas distintas a una función de hash producen la misma salida. Es matemáticamente imposible que una función de hash carezca de colisiones, ya que el número… …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”