Análisis complejo

Análisis complejo
Gráfico de la función f(z)=(z2-1)(z-2-i)2/(z2+2+2i). La coloración representa el argumento de la función, mientas que el brillo representa el módulo.

El análisis complejo es la rama de las matemáticas que en parte investiga las funciones holomorfas, también llamadas funciones analíticas. Una función es holomorfa en una región abierta del plano complejo si está definida en esta región, toma valores complejos y por último es diferenciable en cada punto de esta región abierta con derivadas continuas.

El que una función compleja, sea diferenciable en el sentido complejo tiene consecuencias mucho más fuertes que la diferenciabilidad usual en los reales. Por ejemplo, toda función holomorfa se puede representar como una serie de potencias en algún disco abierto donde la serie converge a la función. Si la serie de potencias converge en todo el plano complejo se dice que la función es entera. Una definición equivalente para función holomorfa es: una función compleja sobre los complejos que puede ser representada como una serie de potencias. Esta definición es la más común para funciones holomorfas de varias variables. En particular, las funciones holomorfas son infinitamente diferenciables, un hecho que es marcadamente diferente de lo que ocurre en las funciones reales diferenciables. La mayoría de las funciones elementales como lo son, por ejemplo, algunos polinomios, la función exponencial y las funciones trigonométricas, son holomorfas.

Contenido

Historia

Augustin Louis Cauchy, uno de los grandes precursores del análisis complejo.

El análisis complejo es una de las ramas clásicas de las matemáticas que tiene sus raíces más allá del siglo XIX. Los nombres destacados en su desarrollo son Euler, Gauss, Riemann, Cauchy, Weierstrass y muchos más en el siglo XX. Tradicionalmente, el análisis complejo, en particular la teoría de las aplicaciones conformes, tiene muchas aplicaciones en ingeniería, pero es ampliamente usada también en teoría de números analítica. En tiempos modernos se convirtió en popular gracias al empuje de la dinámica compleja y los dibujos de fractales, producidos por la iteración de funciones holomorfas, de los cuales el más popular es el conjunto de Mandelbrot. Otras aplicaciones importantes del análisis complejo son las de la teoría de cuerdas, una teoría de campos cuánticos conforme-invariante.

Resultados principales

Integrales de contorno

Una herramienta de central importancia en el análisis complejo es la integral de contorno. La integral de una función que sea holomorfa sobre y en el interior de un camino cerrado es siempre cero. Esto es el Teorema integral de Cauchy. Los valores de una función holomorfa dentro de un disco pueden ser hallados mediante una integral de contorno sobre la frontera del disco (fórmula integral de Cauchy). Las integrales de contorno en el plano complejo se usan a menudo para encontrar integrales reales complicadas, y para esto es útil la teoría de los residuos. Si una función tiene un una singularidad en algún punto (o número finitos de ellos), que quiere decir que sus valores "estallan", que no tiene un valor finito en tales puntos, entonces se puede definir el residuo de la función en dicha singularidad, y estos residuos pueden ser usados para calcular integrales aparentemente difíciles de una manera sencilla, este es el contenido del poderoso teorema de los residuos. El curioso comportamiento de las funciones holomorfas cerca de las singularidades esenciales es descrito por el teorema de Weierstrass-Casorati. Las funciones que tienen sólo polos (un tipo de singularidad de funciones racionales donde el polinomio denominador tiene un número finito de zeros) y no singularidades esenciales se dicen meromorfas.

Series de Laurent

Las series de Laurent son similares a las series de Taylor pero pueden ser usadas para estudiar el comportamiento de las funciones cerca de las singularidades.

Teorema de Liouville

Una función acotada que sea holomorfa en el plano complejo debe ser constante; esto es el Teorema de Liouville, que puede usarse para dar una prueba natural y breve del Teorema fundamental del álgebra, que dice que el cuerpo de los números complejos es un cuerpo algebraicamente cerrado.

Continuación analítica

Una propiedad importante de las funciones holomorfas es que si una función lo es en un dominio simplemente conexo entonces sus valores están completamente determinados por sus valores sobre cualquier subdominio más pequeño. La función sobre el dominio más grande se diría que está analíticamente continuada, que es la continuación desde sus valores en el dominio más pequeño. Esto permite extender, a casi todo el plano, la definición de funciones como la función ζ de Riemann que están inicialmente definidas en términos de sumas infinitas que convergen sólo sobre dominios limitados. Algunas veces, como en el caso del logaritmo natural, es imposible continuar analíticamente una función holomorfa a un dominio conexo no simple en el plano complejo, pero es posible extenderla a una función holomorfa sobre una superficie íntimamente relacionada conocida como superficie de Riemann.

Otros

Existe también una rica teoría en el caso de más de una dimensión compleja, donde las propiedades analíticas como las de expansión en series de potencias permanece aún cierta pero que sin embargo la mayoría de las propiedades geométricas de las funciones en una dimensión compleja (como la de transformación conforme) ya no lo son. El teorema de representación conforme de Riemann sobre las relaciones conformes de ciertos dominios en el plano complejo, que puede ser el resultado más importante en la teoría unidimensional, falla totalmente en dimensiones mayores.

Véase también

Enlaces externos


Wikimedia foundation. 2010.

Игры ⚽ Поможем сделать НИР

Mira otros diccionarios:

  • Análisis complejo — El análisis complejo es la rama de las matemáticas que investiga las funciones holomorfas, esto es, las funciones que están definidas en alguna región del plano complejo, y que toman valores complejos y son diferenciables como funciones complejas …   Enciclopedia Universal

  • Cero (análisis complejo) — Saltar a navegación, búsqueda En análisis complejo, un cero de una función holomorfa f es un número complejo a que cumple la condición f(a) = 0. Contenido 1 Multiplicidad de un cero 2 Existencia de ceros …   Wikipedia Español

  • Polo (análisis complejo) — Saltar a navegación, búsqueda En análisis complejo, un polo de una función holomorfa es un cierto tipo de singularidad que se comporta como la singularidad 1/zn en z = 0. Un polo de la función f(z) es un punto z = a tal que f(z) tiende a infinito …   Wikipedia Español

  • Teorema de Liouville (análisis complejo) — Para otros teoremas homónimos, véase Teorema de Liouville. En matemáticas, y en particular en el análisis complejo, el teorema de Liouville afirma que si una función es holomorfa en todo el plano complejo y está acotada, entonces es constante.… …   Wikipedia Español

  • Teorema de Hurwitz (análisis complejo) — Este artículo trata sobre el teorema en análisis complejo. Para otros usos del teorema, véase Teorema de Hurwitz. En análisis complejo, un campo de las matemáticas, el teorema de Hurwitz, llamado así por Adolf Hurwitz, expone aproximadamente que …   Wikipedia Español

  • Residuo (análisis complejo) — Saltar a navegación, búsqueda Se denomina residuo de una función analítica f(z) en una singularidad aislada z = z0 al número donde C representa una circunferencia de centro z0 y radio R en cuyo interior no hay puntos singulares de la función… …   Wikipedia Español

  • Análisis real — Saltar a navegación, búsqueda El análisis real es la rama de la matemática que se ocupa de los números reales y sus funciones. Se puede ver como una extensión rigurosa del cálculo, que estudia más profundamente las sucesiones y sus límites,… …   Wikipedia Español

  • Análisis matemático — El estudio del conjunto de Mandelbrot que es un objeto fractal con autosimilaridad estadística involucra diversas áreas del análisis matemático, el análisis de la convergencia, la teoría de la medida, la geometría y la teoría de la probabilidad y …   Wikipedia Español

  • Análisis — (Del gr. analysis < analyo, desatar.) ► sustantivo masculino 1 Distinción y separación de las partes de un todo hasta llegar a conocer los principios o elementos que lo configuran. IRREG. plural análisis 2 LITERATURA Examen que se hace de un… …   Enciclopedia Universal

  • Análisis de circuitos RLC de corriente alterna — Saltar a navegación, búsqueda El Análisis de circuitos RLC corriente alterna es una rama de la electrónica que detalla la resolución de las ecuaciones que definen estos circuitos, permitiendo así el análisis de su funcionamiento. A parte de… …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”