- Quinto postulado de Euclides
-
Quinto postulado de Euclides
El quinto postulado de Euclides dice, literalmente:
Postúlese... Y que si una recta al incidir sobre dos rectas hace los ángulos internos del mismo lado menores que dos rectos, las dos rectas prolongadas indefinidamente se encontrarán en el lado en el que están los [ángulos] menores que dos rectos.
EuclidesEuclides, en su tratado "Los Elementos", construye toda la Geometría hasta entonces conocida –la que luego se llamó Geometría euclidiana– basándose en tan sólo 23 definiciones, ocho nociones comunes y cinco postulados.
Contenido
Algunas formulaciones equivalentes del V postulado
- La suma de [las medidas de] los ángulos de cualquier triángulo es igual a [la suma de las medidas de] dos ángulos rectos.
Elementos, I, 32. (Proposición ya conocida en tiempos de Aristóteles, siglo IV a. C.) - Las rectas paralelas son equidistantes (atribuido a Posidonio, siglos I-II a. C.)
- Por un punto exterior a una recta sólo cabe trazar una paralela (Claudio Ptolomeo siglo II).
Ésta es, sin duda, la formulación más conocida del postulado. Tanto es así que es muy frecuente encontrar libros en los que se dice que es éste el quinto postulado de Euclides. - Dos rectas paralelas guardan entre sí una distancia finita (Proclo, siglo V).
- Las rectas no equidistantes convergen en una dirección y divergen en la opuesta (Thābit ibn Qurra, h. 826-901).
- Todos los puntos equidistantes de una línea recta, situados a un lado determinado de ella, constituyen una línea recta (Clavio, 1574).
- Sobre una recta finita siempre se puede construir un triángulo semejante a un triángulo dado (Wallis, 1663).
- Existe un par de triángulos no congruentes, pero semejantes (Saccheri, 1733).
- En todo cuadrilátero que contenga tres ángulos rectos, el cuarto ángulo también es recto. (Clairaut, 1741).
- Se puede construir un triángulo cuya área sea mayor que cualquier área dada (Gauss, 1799).
- Dados tres puntos no alineados, siempre será posible construir un círculo que pase por todos ellos (Legendre, 1824).
-
-
- No hay patrón métrico absoluto de longitud (Gauss, 1816).
-
La dificultad y el problema
Para la mentalidad contemporánea resulta difícil entender que se considerara polémico el V postulado. Esto es así porque el enunciado que se ha popularizado hasta sustituir al enunciado original es el de Ptolomeo (el 3º en el apartado Algunas formulaciones equivalentes del V postulado). Pero, aunque es equivalente, el enunciado original es: Y que si una recta al incidir sobre dos rectas hace los ángulos internos del mismo lado menores que dos rectos, las dos rectas prolongadas indefinidamente se encontrarán en el lado en el que están los [ángulos] menores que dos rectos.
Los cinco postulados de Euclides son los siguientes:
- Postúlese el trazar una línea recta desde un punto cualquiera hasta un punto cualquiera.
- Y el prolongar continuamente una recta finita en línea recta.
- Y el describir un círculo con cualquier centro y distancia.
- Y el ser todos los ángulos rectos iguales entre sí.
- Y que si una recta al incidir sobre dos rectas hace los ángulos internos del mismo lado menores que dos rectos, las dos rectas prolongadas indefinidamente se encontrarán en el lado en el que están los menores que dos rectos.
Al leerlo tal y como lo escribió Euclides y dentro de su contexto, es fácil comprender que muchos consideraran que el V postulado, mucho más complicado en su formulación que los otros cuatro, parece no encajar entre estos. El problema es pues si realmente es el V postulado independiente de los otros cuatro, o bien puede deducirse de ellos (junto con las nociones comunes y las definiciones). ¿Es realmente un postulado o debe incluirse entre las proposiciones y teoremas?
Desde el principio hay distintas dificultades (de tipo, digamos, psicológico) en aceptarlo como postulado, y estas dan lugar a distintas posiciones frente al mismo. Por un lado estaban los que lo aceptaban sin más como un postulado. En otro sector estaban los que prefieren incluirlo entre las nociones comunes (tipo Las cosas iguales a una misma cosa son también iguales entre sí.). Pero eran muchos los que consideraban que seguramente era posible probarlo a partir de los otros cuatro postulados (y de las definiciones y nociones comunes). Probablemente influyera decisivamente en esta posición el hecho de que el postulado sea una proposición condicional.
En la discusión se llega a decir cosas como:
[...] la afirmación de que como convergen más y más a medida que se prolongan, llegarán alguna vez a encontrarse, es una afirmación verosímil pero no es necesaria a falta de un argumento que pruebe que esto es verdad acerca de las líneas rectas. Pues el hecho de que haya algunas líneas que se aproximan indefinidamente pero permanecen sin tocarse, por más improbable y paradójico que parezca, también es cierto y está completamente comprobado en relación con líneas de otro tipo. ¿Por qué en el caso de las rectas no es posible lo mismo que ocurre con las líneas mentadas?
Proclo, Comentarios a los Elementos.En el fondo de este tipo de discusiones está el horror al infinito que se encuentra presente en la cultura clásica. La posibilidad de que las cosas sucedan en el infinito les produce a los griegos verdadera repulsa.
La independencia del V postulado y las geometrías no euclídeas
Unos 22 siglos después de que se escribieran los Elementos por fin se llega a una conclusión: el V postulado es independiente de los otros cuatro. Y se llega a esta respuesta mediante un camino sorprendente. La prueba de la independencia del V postulado lleva implícita la posibilidad de que existan geometrías en los que no se cumple este postulado. Dicho de otro modo: desde el punto de vista lógico no hay contradicción ninguna en suponer que por un punto exterior a una recta puedan pasar más de una paralela a la recta, o incluso ninguna.
Parece difícil comprender esta afirmación, puesto que en la experiencia común sabemos que (excepto errores de dibujo), el V postulado es cierto. Para comprenderlo debemos hacer un esfuerzo de abstracción por intentar olvidar nuestro significado intuitivo de qué es una recta y acudir únicamente a las definiciones de Euclides.
Según Euclides una línea es una longitud sin anchura (Elementos, Libro I, Definiciones, 2), Una línea recta es aquella que yace por igual respecto de los puntos que están en ella (Elementos, Libro I, Definiciones, 4), Una superficie es lo que sólo tiene longitud y anchura (Elementos, Libro I, Definiciones, 5), Unas superficie plana es aquella que yace por igual respecto de las líneas que están en ellas (Elementos, Libro I, Definiciones, 7), Son rectas paralelas las que estando en el mismo plano y siendo prolongadas indefinidamente en ambos sentidos, no se encuentran una a otra en ninguno de ellos (Elementos, Libro I, Definiciones, 23) y Postúlese el trazar una línea recta desde un punto cualquiera hasta un punto cualquiera (Elementos, Libro I, Postulados, 1). De todas formas, dado que es más sencillo para nuestro propósito, consideraremos la definición dada por Arquímedes en "Sobre la esfera y el cilindro": la recta es la más corta de todas las líneas que tienen los mismos extremos.
Ahora bien, excepto porque tenemos una noción de recta y de plano que nos permiten comprobar que esas nociones encajan en las definiciones dadas, éstas son demasiado difusas desde el punto de vista lógico como para considerar que no puedan ser válidas otras interpretaciones. Por ejemplo, si consideramos una superficie esférica y le damos la denominación de plano, encaja perfectamente en las definiciones de plano. En este caso, una recta debería de ser (en virtud de lo dicho, en especial de la propiedad de ser la línea más corta) el trozo de circunferencia máxima (es decir, una circunferencia que pasa por dos puntos diametralmente opuestos de la superficie esférica) que pasa por dos puntos dados. En tal situación, por un punto exterior a una recta no pasaría ninguna recta paralela a la dada.
La aparición de las geometrías no euclídeas
En el siglo XIX se da conclusión al problema de la independencia del V postulado. Lo hacen de manera independiente Bolyai y Lobatchevsky, aunque Gauss ya había resuelto el problema con anterioridad (eso sí, no había publicado sus resultados, y la paternidad del descubrimiento fue para los otros dos geómetras). La idea es muy simple: en Matemática no está permitido llegar a una contradicción, es decir, obtener un resultado que sea exactamente la negación de otro resultado. No puede obtenerse que partiendo de las mismas hipótesis sea cierto, a la vez, que (por ejemplo) dos rectas se corten y que esas dos mismas rectas no se corten. Se llegaría a la conclusión de que (de no haber cometido errores de razonamiento, claro) alguna de las hipótesis ha de ser falsa.
La idea que dio solución al problema es la siguiente: si el V postulado depende de los otros cuatro, es que no nos hace falta incluirlo entre nuestras hipótesis (postulados). Así que en el desarrollo de la teoría, tarde o temprano, aparecerá en forma de teorema. Ahora bien, si eliminamos dicho postulado y le añadimos su negación, de ser cierto que el postulado V depende de los otros, llegaremos a demostrarlo, y con ello tendremos que tanto una proposición (el V postulado) como su contraria (la negación del V postulado que ahora lo sustituye) son ciertas. Habremos pues llegado a una contradicción, algo que no es admisible. Alguna de las hipótesis tiene que ser falsa, y esta ha de ser la nueva que se ha introducido, pues es la única que choca contra nuestra intuición (las demás sabemos que son ciertas porque ya lo eran en la geometría de Euclides).
En contra de lo que pudiera pensarse, con este método no se llegó a contradicción alguna. Es más, se llegó a demostrar que las geometrías así obtenidas por Bolyai y por Lobatchevsky eran consistentes (lo que quiere decir que no contenían contradicción lógica ninguna). Además hay diferentes formas de negar el V postulado (por un punto exterior a una recta no pasa una única recta paralela a la misma) y así diferentes geometrías no euclídeas: por ejemplo, si decimos que no pasa ninguna recta, se obtiene la geometría esférica, que ya hemos presentado, y si decimos que pasan infinitas se obtiene la geometría hiperbólica, la de Lobatchevsky.
El V postulado y la investigación geométrica actual
En la actualidad la Geometría utiliza métodos distintos al sintético (establecer una serie de axiomas y deducir de ellos las propiedades geométricas del objeto a estudiar), que han sido sustituidos por métodos topológicos, analíticos y algebraicos. Cuando se estudia un espacio ya no resulta "interesante" saber si cumple o no el V postulado de Euclides (aunque normalmente es un resultado que se obtiene fácilmente como consecuencia del estudio de otras propiedades más interesantes en la actualidad, como es la de calcular el tensor curvatura del espacio en cuestión -indirectamente esto nos confirmará o no si el espacio cumple con el V postulado). La cuestión sobre el V postulado ha quedado relegado a un problema histórico que ha contribuido enormemente al desarrollo de la Geometría, pero que actualmente parece que ya no puede seguir contribuyendo en ese sentido, y es tomado como una cuestión secundaria en el estudio de la geometría de un espacio.
Véase también
- Geometría euclidiana
- Historia de la Geometría
Categorías: Geometría euclidiana | Geometría no euclidiana | Geometría elemental | Historia de la matemática - La suma de [las medidas de] los ángulos de cualquier triángulo es igual a [la suma de las medidas de] dos ángulos rectos.
Wikimedia foundation. 2010.