Función infinitamente diferenciable
- Función infinitamente diferenciable
-
Una función suave o infinitamente diferenciable es una función que admite derivadas de cualquier orden, y por tanto todas sus derivadas de cualquier orden son continuas.
Las funciones analíticas son casos particulares de funciones suaves, pero no toda función suave es analítica. Por ejemplo la función:
Es infinitamente diferenciable en todos sus puntos pero no es analítica.
Wikimedia foundation.
2010.
Mira otros diccionarios:
Función continuamente diferenciable — Una función continuamente diferenciable. En análisis matemático, una clase diferenciable es una clasificación de una función de acuerdo a las propiedades de sus derivadas. Clases diferenciales de orden superior corresponden a la existencia de más … Wikipedia Español
Función holomorfa — Las funciones holomorfas son el principal objeto de estudio del análisis complejo; son funciones que se definen sobre un subconjunto abierto del plano complejo C y con valores en C, que además son complejo diferenciables en cada punto. Esta… … Wikipedia Español
Función holomorfa — Las funciones holomorfas son el principal objeto de estudio del Análisis complejo; son funciones que se definen sobre un subconjunto abierto del plano complejo C y con valores en C, que además son complejo diferenciables en cada punto. Esta… … Enciclopedia Universal
Función homogénea — En matemática, una función homogénea es una función que presenta un comportamiento multiplicativo de escala interesante: si todos los argumentos se multiplican por un factor constante, entonces el valor de la función resulta ser un cierto número… … Wikipedia Español
Función analítica — En matemáticas una función analítica es aquella que puede expresarse como una serie de potencias convergente. Una función analítica es suave: tiene infinitas derivadas. La noción de función analítica puede definirse para funciones reales o… … Wikipedia Español
Función de utilidad — Una función de utilidad es una función real que mide la satisfacción o utilidad obtenida por un consumidor cuando disfruta vía consumo de cierta cantidad de bienes. Matemáticamente puede demostrarse que si es posible modelizar la conducta de un… … Wikipedia Español
Derivada — La derivada de la función en el punto marcado equivale a la pendiente de la recta tangente (la gráfica de la función está dibujada en negro; la tangente a la curva está dibujada en rojo). En matemáticas, la derivada de una función es una medida… … Wikipedia Español
Serie de Taylor — sin(x) y aproximaciones de Taylor centradas en 0, con polinomios de grado 1, 3, 5, 7, 9, 11 y 13. En matemáticas, una serie de Taylor de una función f(x) infinitamente derivable (real o compleja) defin … Wikipedia Español
3-esfera — Proyección estereográfica de los paralelos de una hiperesfera (rojo), los meridianos (azul) y los hipermeridianos (verde). Debido a la propiedad conforme de la proyección estereográfica, todas estas curvas se intersecan unas a otras… … Wikipedia Español
Espacio de Banach — Saltar a navegación, búsqueda En matemáticas, los espacios de Banach, llamados así en honor de Stefan Banach, son uno de los objetos de estudio más importantes en análisis funcional. Los espacios de Banach son típicamente espacios de funciones de … Wikipedia Español