Integración de Montecarlo

Integración de Montecarlo

En matemáticas, y más concretamente en análisis numérico, se conocen como métodos de Montecarlo a una serie de métodos de integración numérica que se basan en la utilización de números pseudoaleatorios.

Es decir, los métodos de integración de Montecarlo son algoritmos para encontrar una evaluación aproximada de una integral definida, normalmente de integrales múltiples. Los algoritmos deterministas de integración numérica, para aproximar la integral, evalúan la función en un conjunto de puntos correspondientes a una parrilla regular o en un conjunto de puntos predefinidos. En cambio, los métodos de Montecarlo eligen de forma aleatoria los puntos en los que se evaluará la función. La integración de Montecarlo forma parte de una familia de algoritmos llamados genéricamente métodos de Montecarlo. Estos algoritmos utilizan números aleatorios para resolver diferentes tipos de problemas matemáticos y reciben su nombre debido al casino de Montecarlo

Algoritmo

Sea la integral definida en un intervalo (a,b) de f(x)dx , siendo f(x) una función de mucha dificultad para integrar; se hace el siguiente cambio de variable y=\frac{x-a}{b-a}, dx=dy(b-a) y se sustituye en la función a integrar definida f(x)dx quedando una función a integral definida en un intervalo (0,1)h(y)dy.

Luego se generan las variables aleatorias ui, n de veces se quiera por medio de la siguiente fórmula (generador congruencial de números pseudo-aleatorios): xn+1=(axn+c)%m donde el símbolo % indica que es el residuo de la división de las dos partes relacionada, xn es la semilla, c es el incremento, a es el multiplicativo y m es el módulo; donde a tiene que ser desigual a xn. Estos valores se toman al azar y se van obteniendo los xn+1 n veces que se requiera.

Cuando tengamos los xn+1 se comienza a generar los ui por esta fórmula ui=xi/m, donde inicialmente i=1, es decir u1=x1/m, u2=x2/m, así sucesivamente. Los números ui obtenidos son números aleatorios en un intervalo (0,1), que se van a sustituir en la fórmula siguiente: ((b-a)/n)× Σ f(ui(b-a)+a) (falta la justificación de esta formula!)y eso nos da la aproximación de la integral definida en (a,b) de f(x).

Mientras más grande sea n, más exacta es la aproximación.

Ejemplo

A través de un ejemplo se ilustrará el método. El proceso consiste en calcular el área encerrada por una línea cerrada cualquiera que está incluida en un cuadrado de lado unitario (y área unitaria).

Al generar puntos al azar (mediante dos números aleatorios) se calcula la fracción que se establece entre la cantidad de puntos que caen dentro del área asociada a la curva y la cantidad total de puntos (o puntos en el cuadrado).

Supongamos que el área a calcular es un cuarto de círculo, de radio unitario, que está dentro de un cuadrado de lado unitario. La fracción será:


Área del ¼ círculo / Área del cuadrado = Puntos en el ¼ de círculo / Puntos en el cuadrado

= π r² ¼ / 1 x 1


Para generar los puntos utilizamos dos sucesiones de números aleatorios R1 y R2. Si queremos saber si un punto pertenece al cuarto de círculo, establecemos, a partir de la relación pitagórica, la condición de pertenencia:


√ R1² + R2² ≤ 1


Si se verifica la relación anterior, el punto pertenece al cuarto de círculo (y al cuadrado). De lo contrario pertenecerá sólo al cuadrado.

Para el caso de una simulación con 25 pares de números aleatorios, es decir, para 25 puntos generados, nos dará una fracción tal como 21/25 = 0,840, mientras que el área buscada será:


π r² ¼ = π ¼ = 0,785


La precisión del método se mejora utilizando una gran cantidad de simulaciones, siendo el error del orden del 0,001 cuando se emplean unos 15.000 puntos simulados.


Véase también


Wikimedia foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Mira otros diccionarios:

  • Integración de Monte Carlo — Saltar a navegación, búsqueda En matemáticas, y más concretamente en análisis numérico, se conocen como métodos de Montecarlo a una serie de métodos de integración numérica que se basan en la utilización de números pseudoaleatorios. Es decir, los …   Wikipedia Español

  • Integración numérica — En análisis numérico, la integración numérica constituye una amplia gama de algoritmos para calcular el valor numérico de una integral definida y, por extensión, el término se usa a veces para describir algoritmos numéricos para resolver… …   Wikipedia Español

  • Método de Montecarlo — El método de Montecarlo[1] es un método no determinístico o estadístico numérico, usado para aproximar expresiones matemáticas complejas y costosas de evaluar con exactitud. El método se llamó así en referencia al Casino de Montecarlo (Principado …   Wikipedia Español

  • Kristen Nygaard — en 1997 …   Wikipedia Español

  • Inmigración en Argentina — Las migraciones al territorio actual de la Argentina comenzaron varios milenios a. C., con la llegada de las culturas de origen asiático que ingresaron al continente americano por Beringia, según las teorías más aceptadas, y fueron poblando… …   Wikipedia Español

  • Número π — π (pi) es la relación entre la longitud de una circunferencia y su diámetro, en geometría euclidiana. Es un número irracional y una de las constantes matemáticas más importantes. Se emplea frecuentemente en matemáticas, física e ingeniería. El… …   Wikipedia Español

  • Cencosud — Saltar a navegación, búsqueda Un hipermercado Jumbo en Tucumán, Argentina. Cencosud (acrónimo de Centros Comerciales Sudamericanos S.A.), consorcio empresarial de capitales chileno que opera en diversos pa …   Wikipedia Español

  • Niza — Para el grupo español de música, véase Niza (grupo musical). Niza Nice Nissa Escudo …   Wikipedia Español

  • Copiapó — Saltar a navegación, búsqueda Para otros usos de este término, véase Copiapó (desambiguación). Copiapó …   Wikipedia Español

  • Enrique Del Moral — Saltar a navegación, búsqueda Enrique Del Moral Enrique del Moral Información personal Nombre Enrique del Moral Domínguez Nacimiento …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”