- Análisis numérico
-
El análisis numérico o cálculo numérico es la rama de las matemáticas que se encarga de diseñar algoritmos para, a través de números y reglas matemáticas simples, simular procesos matemáticos más complejos aplicados a procesos del mundo real.
El análisis numérico cobra especial importancia con la llegada de los ordenadores. Los ordenadores son útiles para cálculos matemáticos extremadamente complejos, pero en última instancia operan con números binarios y operaciones matemáticas simples.
Desde este punto de vista, el análisis numérico proporcionará todo el andamiaje necesario para llevar a cabo todos aquellos procedimientos matemáticos susceptibles de expresarse algorítmicamente, basándose en algoritmos que permitan su simulación o cálculo en procesos más sencillos empleando números.
Definido el error, junto con el error admisible, pasamos al concepto de estabilidad de los algoritmos. Muchas de las operaciones matemáticas pueden llevarse adelante a través de la generación de una serie de números que a su vez alimentan de nuevo el algoritmo (feedback). Esto proporciona un poder de cálculo y refinamiento importantísimo a la máquina que a medida que va completando un ciclo va llegando a la solución. El problema ocurre en determinar hasta cuándo deberá continuar con el ciclo, o si nos estamos alejando de la solución del problema.
Finalmente, otro concepto paralelo al análisis numérico es el de la representación, tanto de los números como de otros conceptos matemáticos como los vectores, polinomios, etc. Por ejemplo, para la representación en ordenadores de números reales, se emplea el concepto de coma flotante que dista mucho del empleado por la matemática convencional.
En general, estos métodos se aplican cuando se necesita un valor numérico como solución a un problema matemático, y los procedimientos "exactos" o "analíticos" (manipulaciones algebraicas, teoría de ecuaciones diferenciales, métodos de integración, etc.) son incapaces de dar una respuesta. Debido a ello, son procedimientos de uso frecuente por físicos e ingenieros, y cuyo desarrollo se ha visto favorecido por la necesidad de éstos de obtener soluciones, aunque la precisión no sea completa. Debe recordarse que la física experimental, por ejemplo, nunca arroja valores exactos sino intervalos que engloban la gran mayoría de resultados experimentales obtenidos, ya que no es habitual que dos medidas del mismo fenómeno arrojen valores exactamente iguales. .Contenido
Problemas
Los problemas de esta disciplina se pueden dividir en dos grupos fundamentales:
- Problemas de dimensión finita: aquellos cuya respuesta son un conjunto finito de números, como las ecuaciones algebraicas, los determinantes, los problemas de valores propios, etc.
- Problemas de dimensión infinita: problemas en cuya solución o planteamiento intervienen elementos descritos por una cantidad infinita de números, como integración y derivación numéricas, cálculo de ecuaciones diferenciales, interpolación, etc.
Clasificación atendiendo a su naturaleza o motivación
Asimismo, existe una subclasificación de estos dos grandes apartados en tres categorías de problemas, atendiendo a su naturaleza o motivación para el empleo del cálculo numérico:
- 1) Problemas de tal complejidad que no poseen solución analítica.
- 2) Problemas en los cuales existe una solución analítica, pero ésta, por complejidad u otros motivos, no puede explotarse de forma sencilla en la práctica.
- 3) Problemas para los cuales existen métodos sencillos pero que, para elementos que se emplean en la práctica, requieren una cantidad de cálculos excesiva; mayor que la necesaria para un método numérico.
Áreas de estudio
El análisis numérico se divide en diferentes disciplinas de acuerdo con el problema que resolver.
Cálculo de los valores de una función
Uno de los problemas más sencillos es la evaluación de una función en un punto dado. Para polinomios, uno de los métodos más utilizados es el algoritmo de Horner, ya que reduce el número de operaciones a realizar. En general, es importante estimar y controlar los errores de redondeo que se producen por el uso de la aritmética de punto flotante.
La extrapolación es muy similar a la interpolación, excepto que ahora queremos encontrar el valor de la función desconocida en un punto que no está comprendido entre los puntos dados.
La regresión es también similar, pero tiene en cuenta que los datos son imprecisos. Dados algunos puntos, y una medida del valor de la función en los mismos (con un error debido a la medición), queremos determinar la función desconocida. El método de los mínimos cuadrados es una forma popular de conseguirlo.
Resolución de ecuaciones y sistemas de ecuaciones
Otro problema fundamental es calcular la solución de una ecuación o sistema de ecuaciones dado. Se distinguen dos casos dependiendo de si la ecuación o sistema de ecuaciones es o no lineal. Por ejemplo, la ecuación 2x + 5 = 3 es lineal mientras que la ecuación 2x2 + 5 = 3 no lo es.
Mucho esfuerzo se ha puesto en el desarrollo de métodos para la resolución de sistemas de ecuaciones lineales. Métodos directos, i.e., métodos que utilizan alguna factorización de la matriz son el método de eliminación de Gauss, la descomposición LU, la descomposición de Cholesky para matrices simétricas (o hermíticas) definidas positivas, y la descomposición QR. Métodos iterativos como el método de Jacobi, el método de Gauss-Seidel, el método de las aproximaciones sucesivas y el método del gradiente conjugado se utilizan frecuentemente para grandes sistemas.
En la resolución numérica de ecuaciones no lineales algunos de los métodos más conocidos son los métodos de bisección, de la secante y de la falsa posición. Si la función es además derivable y la derivada se conoce, el método de Newton es muy utilizado. Este método es un método de iteración de punto fijo. La linealización es otra técnica para resolver ecuaciones no lineales.
Las ecuaciones algebraicas polinomiales poseen una gran cantidad de métodos numéricos para enumerar :
- Método de Gräeffe (o método de Lobachevsky o de Lobachevsky-Dandelin-Gräeffe o del cuadrado de las raíces)
- Método de Laguerre
- Método de Bairstow (o método de Lin-Bairstow)
- Método de Bernoulli
- Método de Horner
- Método de Householder
- Método de Newton-Raphson especializado para polinomios
- Método de Richmond especializado para polinomios
- Método modificado de Richmond
- Método de Newton-Horner
- Método de Richomnd-Horner
- Método de Birge-Biète
- Método de Jenkins-Traub
Descomposición espectral y en valores singulares
Bastantes problemas importantes pueden ser expresados en términos de descomposición espectral (el cálculo de los vectores y valores propios de una matriz) o de descomposición en valores singulares. Por ejemplo, el análisis de componentes principales utiliza la descomposición en vectores y valores propios.
Optimización
Los problemas de optimización buscan el punto para el cual una función dada alcanza su máximo o mínimo. A menudo, el punto también satisface cierta restricción.
Ejemplos de ,problemas de optimización son la programación lineal en que tanto la función objetivo como las restricciones son lineales. Un método famoso de programación lineal es el método simplex.
El método de los multiplicadores de Lagrange puede usarse para reducir los problemas de optimización con restricciones a problemas sin restricciones.
Evaluación de integrales
La integración numérica, también conocida como cuadratura numérica, busca calcular el valor de una integral definida. Métodos populares utilizan alguna de las fórmulas de Newton–Cotes (como la regla del rectángulo o la regla de Simpson) o de cuadratura gaussiana. Estos métodos se basan en una estrategia de "divide y vencerás", dividiendo el intervalo de integración en subintervalos y calculando la integral como la suma de las integrales en cada subintervalo, pudiéndose mejorar posteriormente el valor de la integral obtenido mediante el método de Romberg. Para el cálculo de integrales múltiples estos métodos requieren demasiado esfuerzo computacional, siendo útil el método de Monte Carlo.
Ecuaciones diferenciales
El análisis numérico también puede calcular soluciones aproximadas de ecuaciones diferenciales, bien ecuaciones diferenciales ordinarias, bien ecuaciones en derivadas parciales. Los métodos utilizados suelen basarse en discretizar la ecuación correspondiente. Es útil ver la derivación numérica.
Para la resolución de ecuaciones diferenciales ordinarias los métodos más utilizados son el método de Euler y los métodos de Runge-Kutta.
Las ecuaciones en derivadas parciales se resuelven primero discretizando la ecuación, llevándola a un subespacio de dimensión finita. Esto puede hacerse mediante un método de los elementos finitos.
Otros temas de análisis numérico
- Error de aproximación, error absoluto y error relativo
- Orden de convergencia
- Redondeo
- Sistema de numeración
- Truncamiento
Referencias
- Nick Trefethen (1992), The definition of numerical analysis, SIAM News, noviembre.
Enlaces externos
- Wikimedia Commons alberga contenido multimedia sobre Análisis numérico. Commons
En castellano
- Artículo sobre análisis numérico en la Enciclopedia libre universal en español
- http://docencia.udea.edu.co/ingenieria/analisis-numerico/
- http://mat21.etsii.upm.es/matesp/index.htm
- Grupo de métodos numéricos en ingeniería (ETS Ingenieros de Caminos de la Universidad de A Coruña)
- Notas sobre métodos numéricos básicos para ingeniería
En inglés
Categorías:- Análisis numérico
- Análisis matemático
- Ciencias computacionales
Wikimedia foundation. 2010.