- Tau (2π)
-
En matematicas, tau (τ) es una constante propuesta por Bob Palais, Peter Harremoes, Hermann Laurent, Fred Hoyle, Michael Hartl, y otros, como reemplazo para la constante del circulo, π.[1] [2] [3] [4] Su principal argumento es que los circulos son definidos mas naturalmente por su radio que por su diametroT.[note 1] El valor de τ = 2π, o aproximadamente 6.28318,[5] aparece mas frecuentemente en matematicas.
Varios simbolos han sido sugeridos, incluyendo 2π (Laurent), (Palais), (Harremoes), and τ (Hartl). El simbolo τ fue escogido en referencia a turn, vuelta en ingles, dado que en matemáticas τ-radianes son equivalentes a una vuelta completa.
Contenido
Proposed advantages
Palais and Hartl claim a number of advantages of using τ instead of π.
- The so called "special angles", that need to be memorized when using π, simply become fractions of a whole circle, that is , , , and . It is easier to explain that one eighth of a circle corresponds to radians than to radians.[6] Hartl describes the use of pi in this context as a "pedagogical disaster".
- The factor 2π, present in many formulae, such as normal distribution and Fourier transforms, can be eliminated, thus simplifying them.[4]
- The periodicity of the cosine and sine functions is τ instead of 2π, which is simpler and arguably more intuitive.[4]
- The formula for the circumference of a circle becomes simply τr, without introducing a factor 2.
- The formula for area of a circle and the formula for area of a circle sector have identical forms, so students have to memorize only one formula instead of two. (A whole circle is just a circle sector with θ = τ)
- The formula for the area of a circle falls in line with the power rule for integrals (e.g. kinetic energy ). Instead of A = πr2, it becomes .[4]
- Euler's identity is more straightforwardly expressed in τ than it is in π: eiτ = 1 instead of eiπ = − 1, or as it is usually expressed, eiπ + 1 = 0.[4]
- Related to the above, an n-th root of unity is expressed as eτi / n rather than e2πi / n.
- The reactance of an inductor is τfL instead of 2πfL. Similarly, the susceptance of a capacitor is τfC instead of 2πfC.
- Frequencies stand out much more clearly in the (most common time-periodic) functions sin ωt, cos ωt, and eiωt. For example sin (876.89 τ t) is immediately recognizable as an 876.89 Hz sine wave while sin (1753.78 π t) is not.
- The sum of the exterior angles of a polygon is τ.
Possible disadvantages
- The area of a circle is expressed as rather than πr2.
- Tau has many other unrelated mathematical meanings.
- Euler's identity is more precise in the simple phrasings above with π than with τ;[cita requerida] eiπ = − 1 is more specific than eiτ = 1. That is, the first implies that i π is half of a period of the exponential function, plus a period, but not a period, and the latter implies that i τ is a period of the exponential function.
- The measures of the interior angles of a triangle in Euclidean space always add up to π. In general, the sum of the interior angles of a simple n-gon is (n − 2) π.
- The sum of the angles in a linear pair is π. [cita requerida]
- When a transversal intersects two parallel lines, the sum of the interior angles on the same side of the transversal is π. [cita requerida]
Historical notes
- Paul Laurent in Traité D'Algebra wrote equations using 2π as a single symbol.[1]
- The famous Feynman point (six consecutive 9s early in the decimal digits of π) appears one digit earlier in τ, and is seven digits long instead of six (3.14...349999998... * 2 = 6.28...699999996...).[7]
- Following the tradition of the pi day (March 14, or 3.14), "2pi day" has been celebrated[8] [9] [10] on June 28 (6.28), and became more widely adopted (as "tau day") since the publication of Hartl's manifesto in 2010. It has been argued that this is a "perfect day" because 6 and 28 are the two first perfect numbers.[2] [11] [12]
See also
- 2π theorem
Notes
- ↑ For example: x = r cos(''t'') and y = r sin(''t''), or r2 = x2 + y2
References
- ↑ a b Palais, Robert. «Pi is Wrong!». Consultado el 15 de marzo de 2011.
- ↑ a b Michael Hartl. «The Tau Manifesto». Consultado el 9 de julio de 2011.
- ↑ Harremoes, Peter. «Gregory's constant Tau». Consultado el 9 de julio de 2011.
- ↑ a b c d e Palais, Robert (2001). «π Is Wrong!». The Mathematical Intelligencer 23 (3): pp. 7–8. http://www.math.utah.edu/%7Epalais/pi.pdf. Consultado el 2011-07-03.
- ↑ Sequence A019692 in the OEIS.
- ↑ Wolchover, Natalie. «Mathematicians Want to Say Goodbye to Pi», 29 de junio de 2011. Consultado el 03-07-2011.
- ↑ Michael Hartl. «100,000 digits of τ». Consultado el 6 de julio de 2011.
- ↑ Lance Fortnow and William Gasarch (1 de julio de 2009). «2pi-day? Other holiday possibilities!». Computational Complexity. Consultado el 24-07-2011.
- ↑ Mathematics (28 de junio de 2009). «2pi Day». Facebook. Consultado el 24-07-2011.
- ↑ Gerald Thurman (author). Eating Pie in Pie Town on Two Pi Day (flv) [YouTube].
- ↑ Marcus du Sautoy (1 de julio de 2009). «Perfect Numbers». The Times. Archivado desde el original, el 2009-07-17. Consultado el 24-07-2011.
- ↑ Dave Richeson (1 de julio de 2009). «Last Sunday was a perfect day». Division by Zero. Consultado el 24-07-2011.
Further reading
- Hartl, Michael (28 de junio de 2010). «The Tau Manifesto». Tau Day. Consultado el 03-07-2011.
- «The Pi Manifesto» (4 de julio de 2011). Consultado el 07-07-2011.
- «On National Tau Day, Pi Under Attack», NewsCore, Fox News Channel, 28 de junio de 2011. Consultado el 03-07-2011.
- Springmann, Alessondra. «Tau Day: An Even More Fundamental Holiday Than Pi Day», PC World, 28 de junio de 2011. Consultado el 03-07-2011.
- Palmer, Jason. «'Tau day' marked by opponents of maths constant pi», BBC News, 28 de junio de 2011. Consultado el 03-07-2011.
Enlaces externos
- Vi Hart (Author). Pi Is (still) Wrong (flv) [YouTube].
- Kevin Houston. Pi is wrong! Here comes Tau Day (flv) [YouTube].
- Robert Dixon (Author). Pi ain't all that (flv) [YouTube].
Wikimedia foundation. 2010.