Tau (2π)

Tau (2π)

En matematicas, tau (τ) es una constante propuesta por Bob Palais, Peter Harremoes, Hermann Laurent, Fred Hoyle, Michael Hartl, y otros, como reemplazo para la constante del circulo, π.[1] [2] [3] [4] Su principal argumento es que los circulos son definidos mas naturalmente por su radio que por su diametroT.[note 1] El valor de τ = 2π, o aproximadamente 6.28318,[5] aparece mas frecuentemente en matematicas.

Varios simbolos han sido sugeridos, incluyendo (Laurent), \pi\!\!\!\!\;\pi (Palais), \varpi (Harremoes), and τ (Hartl). El simbolo τ fue escogido en referencia a turn, vuelta en ingles, dado que en matemáticas τ-radianes son equivalentes a una vuelta completa.

Contenido

Proposed advantages

Palais and Hartl claim a number of advantages of using τ instead of π.

  • The so called "special angles", that need to be memorized when using π, simply become fractions of a whole circle, that is {\scriptstyle\frac{1}{2}}\tau, {\scriptstyle\frac{1}{3}}\tau, {\scriptstyle\frac{1}{4}}\tau, {\scriptstyle\frac{1}{6}}\tau and {\scriptstyle\frac{1}{12}}\tau. It is easier to explain that one eighth of a circle corresponds to {\scriptstyle\frac{1}{8}}\tau radians than to {\scriptstyle\frac{1}{4}}\pi radians.[6] Hartl describes the use of pi in this context as a "pedagogical disaster".
  • The factor 2π, present in many formulae, such as normal distribution and Fourier transforms, can be eliminated, thus simplifying them.[4]
  • The periodicity of the cosine and sine functions is τ instead of 2π, which is simpler and arguably more intuitive.[4]
  • The formula for the circumference of a circle becomes simply τr, without introducing a factor 2.
  • The formula for area of a circle ({\scriptstyle\frac{1}{2}}\tau r^2) and the formula for area of a circle sector ({\scriptstyle\frac{1}{2}}\theta r^2) have identical forms, so students have to memorize only one formula instead of two. (A whole circle is just a circle sector with θ = τ)
  • The formula for the area of a circle falls in line with the power rule for integrals (e.g. kinetic energy K={\scriptstyle\frac{1}{2}}mv^2). Instead of A = πr2, it becomes A={\scriptstyle\frac{1}{2}}\tau r^2.[4]
  • Euler's identity is more straightforwardly expressed in τ than it is in π: eiτ = 1 instead of eiπ = − 1, or as it is usually expressed, eiπ + 1 = 0.[4]
  • Related to the above, an n-th root of unity is expressed as eτi / n rather than ei / n.
  • The reactance of an inductor is τfL instead of fL. Similarly, the susceptance of a capacitor is τfC instead of fC.
  • Frequencies stand out much more clearly in the (most common time-periodic) functions sin ωt, cos ωt, and eiωt. For example sin (876.89 τ t) is immediately recognizable as an 876.89 Hz sine wave while sin (1753.78 π t) is not.
  • The sum of the exterior angles of a polygon is τ.

Possible disadvantages

  • The area of a circle is expressed as {\scriptstyle\frac12}\tau r^2 rather than πr2.
  • Tau has many other unrelated mathematical meanings.
  • Euler's identity is more precise in the simple phrasings above with π than with τ;[cita requerida] eiπ = − 1 is more specific than eiτ = 1. That is, the first implies that i π is half of a period of the exponential function, plus a period, but not a period, and the latter implies that i τ is a period of the exponential function.
  • The measures of the interior angles of a triangle in Euclidean space always add up to π. In general, the sum of the interior angles of a simple n-gon is (n − 2) π.
  • The sum of the angles in a linear pair is π. [cita requerida]
  • When a transversal intersects two parallel lines, the sum of the interior angles on the same side of the transversal is π. [cita requerida]

Historical notes

  • Paul Laurent in Traité D'Algebra wrote equations using 2π as a single symbol.[1]
  • The famous Feynman point (six consecutive 9s early in the decimal digits of π) appears one digit earlier in τ, and is seven digits long instead of six (3.14...349999998... * 2 = 6.28...699999996...).[7]
  • Following the tradition of the pi day (March 14, or 3.14), "2pi day" has been celebrated[8] [9] [10] on June 28 (6.28), and became more widely adopted (as "tau day") since the publication of Hartl's manifesto in 2010. It has been argued that this is a "perfect day" because 6 and 28 are the two first perfect numbers.[2] [11] [12]

See also

  • 2π theorem

Notes

  1. For example: x = r cos(''t'') and y = r sin(''t''), or r2 = x2 + y2

References

  1. a b Palais, Robert. «Pi is Wrong!». Consultado el 15 de marzo de 2011.
  2. a b Michael Hartl. «The Tau Manifesto». Consultado el 9 de julio de 2011.
  3. Harremoes, Peter. «Gregory's constant Tau». Consultado el 9 de julio de 2011.
  4. a b c d e Palais, Robert (2001). «π Is Wrong!». The Mathematical Intelligencer 23 (3):  pp. 7–8. http://www.math.utah.edu/%7Epalais/pi.pdf. Consultado el 2011-07-03. 
  5. Sequence A019692 in the OEIS.
  6. Wolchover, Natalie. «Mathematicians Want to Say Goodbye to Pi», 29 de junio de 2011. Consultado el 03-07-2011.
  7. Michael Hartl. «100,000 digits of τ». Consultado el 6 de julio de 2011.
  8. Lance Fortnow and William Gasarch (1 de julio de 2009). «2pi-day? Other holiday possibilities!». Computational Complexity. Consultado el 24-07-2011.
  9. Mathematics (28 de junio de 2009). «2pi Day». Facebook. Consultado el 24-07-2011.
  10. Gerald Thurman (author). Eating Pie in Pie Town on Two Pi Day (flv) [YouTube].
  11. Marcus du Sautoy (1 de julio de 2009). «Perfect Numbers». The Times. Archivado desde el original, el 2009-07-17. Consultado el 24-07-2011.
  12. Dave Richeson (1 de julio de 2009). «Last Sunday was a perfect day». Division by Zero. Consultado el 24-07-2011.

Further reading

Enlaces externos


Wikimedia foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Mira otros diccionarios:

  • tau — tau …   Dictionnaire des rimes

  • tau — [ to ] n. m. inv. • 1671 blas.; mot gr. 1 ♦ (1832) Lettre grecque correspondant au t (T). 2 ♦ (1671) Blas. Figure en forme de T appelée aussi croix de Saint Antoine. ♢ Bâton pastoral en forme de potence ou de béquille. ⊗ HOM. Taud, taux , tôt. ●… …   Encyclopédie Universelle

  • Tau — (uppercase Τ, lowercase τ; el. Ταυ [taf] ) is the 19th letter of the Greek alphabet. In the system of Greek numerals it has a value of 300. This letter in English is pronounced IPA|/taʊ/, but in Modern Greek, this letter s name is pronounced… …   Wikipedia

  • Tau — bezeichnet: Tau (Niederschlag), durch Temperaturunterschiede kondensiertes Wasser Morgentau bei morgendlichem Auftreten Tauwerk, in der Seemannssprache ein gedrehtes Seil Tau (Buchstabe) (Majuskel Τ, Minuskel τ), 19. Buchstabe des griechischen… …   Deutsch Wikipedia

  • Tau — Tau, n. [Gr. tay^ the letter [tau] (English {T}).] (Zo[ o]l.) The common American toadfish; so called from a marking resembling the Greek letter tau ([tau]). [1913 Webster] {Tau cross}. See Illust. 6, of {Cross}. [1913 Webster] …   The Collaborative International Dictionary of English

  • tau — (literă grecească) s. m., pl. tau; τ, Τ Trimis de gall, 11.03.2008. Sursa: DOOM 2  tắu (ta, pl. tắi, tále), adj. pos. – Indică posesia la pers. II sing. – Mr. tău, tăi, tu, megl. tǫu, ta. lat. tŭum, probabil disimulat în *toum (Candrea, Éléments …   Dicționar Român

  • tau — s. m. 1. Nome da letra grega correspondente ao T. 2. Cruz branca em forma de T que os cônegos de Santo Antão usavam no hábito. 3.  [Física] Lépton de massa superior à do elétron e igual carga elétrica.   ‣ Etimologia: grego tau, décima nona letra …   Dicionário da Língua Portuguesa

  • Tau — (tou), n. [Gr. tay^.] The nineteenth letter ([Tau], [tau]) of the Greek alphabet, equivalent to English t. [Webster 1913 Suppl.] …   The Collaborative International Dictionary of English

  • tau — [tou, tô] n. [ME taw, tau (esp. with ref. to the tau cross) < L tau < Gr < Sem, as in Heb tav, TAV] the nineteenth letter of the Greek alphabet (Τ, τ) …   English World dictionary

  • Tău — may refer to several villages in Romania:* Tău, a village in Roşia de Secaş Commune, Alba County * Tău, a village in Zau de Câmpie Commune, Mureş County …   Wikipedia

  • tau — nombre que el que se designa una proteína que estabiliza los microtúbulos de las neuronas. La regulación de la molécula se consigue mediante su expresión, localización, y fosforilación. Su disregulación conduce a una serie de enfermedades… …   Diccionario médico

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”