Radiación electromagnética

Radiación electromagnética
Para los aspectos teóricos, véase onda electromagnética.

La radiación electromagnética es una combinación de campos eléctricos y magnéticos oscilantes, que se propagan a través del espacio transportando energía de un lugar a otro.[1] A diferencia de otros tipos de onda, como el sonido, que necesitan un medio material para propagarse, la radiación electromagnética se puede propagar en el vacío. En el siglo XIX se pensaba que existía una sustancia indetectable, llamada éter, que ocupaba el vacío y servía de medio de propagación de las ondas electromagnéticas. El estudio teórico de la radiación electromagnética se denomina electrodinámica y es un subcampo del electromagnetismo.

Contenido

Ecuaciones de Maxwell

Artículo principal: Ecuaciones de Maxwell

Maxwell asoció varias ecuaciones, actualmente denominadas Ecuaciones de Maxwell, de las que se desprende que un campo eléctrico variable en el tiempo genera un campo magnético y, recíprocamente, la variación temporal del campo magnético genera un campo eléctrico. Se puede visualizar la radiación electromagnética como dos campos que se generan mutuamente, por lo que no necesitan de ningún medio material para propagarse. Las ecuaciones de Maxwell también predicen la velocidad de propagación en el vacío (que se representa c, por la velocidad de la luz, con un valor de 299.792.458 m/s), y su dirección de propagación (perpendicular a las oscilaciones del campo eléctrico y magnético que, a su vez, son perpendiculares entre sí).

Dualidad onda-corpúsculo

Artículo principal: Dualidad onda corpúsculo

Dependiendo del fenómeno estudiado, la radiación electromagnética se puede considerar no como una serie de ondas sino como un haz o flujo de partículas, llamadas fotones. Esta dualidad onda-corpúsculo hace que cada fotón tenga una energía directamente proporcional a la frecuencia de la onda asociada, dada por la relación de Planck:

E=h\nu\,

donde E es la energía del fotón, h es la constante de Planck y ν es la frecuencia de la onda.

Valor de la constante de Planck

h =\,\,\, 6.626\ 0693 (11) \times10^{-34}\ \mbox{J}\cdot\mbox{s} \,\,\, = \,\,\,  4.135\ 667\ 43(35) \times10^{-15}\ \mbox{eV}\cdot\mbox{s}

Así mismo, considerando la radiación electromagnética como onda, la longitud de onda λ y la frecuencia de oscilación ν están relacionadas por una constante, la velocidad de la luz en el medio (c en el vacío):

c = \lambda \nu\,

A mayor longitud de onda menor frecuencia (y menor energía según la relación de Plank).

Espectro electromagnético

Artículo principal: Espectro electromagnético

Atendiendo a su longitud de onda, la radiación electromagnética recibe diferentes nombres, y varía desde los energéticos rayos gamma (con una longitud de onda del orden de picómetros) hasta las ondas de radio (longitudes de onda del orden de kilómetros), pasando por el espectro visible (cuya longitud de onda está en el rango de las décimas de micrómetro). El rango completo de longitudes de onda es lo que se denomina el espectro electromagnético.

El espectro visible es un minúsculo intervalo que va desde la longitud de onda correspondiente al color violeta (aproximadamente 400 nanómetros) hasta la longitud de onda correspondiente al color rojo (aproximadamente 700 nm).

En telecomunicaciones se clasifican las ondas mediante un convenio internacional de frecuencias en función del empleo al que están destinadas como se observa en la tabla, además se debe considerar un tipo especial llamado microondas, que se sitúan su rango de frecuencias entre 1 GHz y 300 GHz, es decir, longitudes de onda de entre 30 centímetros a 1 milímetro, que tienen la capacidad de atravesar la ionosfera terrestre, permitiendo la comunicación satelital.

Clasificación de las ondas en telecomunicaciones
Sigla Rango Denominación Empleo
VLF
10 kHz a 30 kHz
Muy baja frecuencia
Radio gran alcance
LF
30 kHz a 300 kHz
Baja frecuencia
Radio, navegación
MF
300 kHz a 3 MHz
Frecuencia media
Radio de onda media
HF
3 MHz a 30 MHz
Alta frecuencia
Radio de onda corta
VHF
30 MHz a 300 MHz
Muy alta frecuencia
TV, radio
UHF
300 MHz a 3 GHz
Ultra alta frecuencia
TV, radar, telefonía móvil
SHF
3 GHz a 30 GHz
Super alta frecuencia
Radar
EHF
30 GHz a 300 GHz
Extremadamente alta frecuencia
Radar

Fenómenos asociados a la radiación electromagnética

Interacción entre radiación electromagnética y conductores

Cuando un alambre o cualquier objeto conductor, tal como una antena, conduce corriente alterna, la radiación electromagnética se propaga en la misma frecuencia que la corriente.

De forma similar, cuando una radiación electromagnética incide en un conductor eléctrico, hace que los electrones de su superficie oscilen, generándose de esta forma una corriente alterna cuya frecuencia es la misma que la de la radiación incidente. Este efecto se usa en las antenas, que pueden actuar como emisores o receptores de radiación electromagnética.

Estudios mediante análisis del espectro electromagnético

Se puede obtener mucha información acerca de las propiedades físicas de un objeto a través del estudio de su espectro electromagnético, ya sea por la luz emitida (radiación de cuerpo negro) o absorbida por él. Esto es la espectroscopia y se usa ampliamente en astrofísica y química. Por ejemplo, los átomos de hidrógeno tienen una frecuencia natural de oscilación, por lo que emiten ondas de radio, las cuales tiene una longitud de onda de 21,12 cm.

Penetración de la radiación electromagnética

En función de la frecuencia, las ondas electromagnéticas pueden no atravesar medios conductores. Esta es la razón por la cual las transmisiones de radio no funcionan bajo el mar y los teléfonos móviles se queden sin cobertura dentro de una caja de metal. Sin embargo, como la energía no se crea ni se destruye, cuando una onda electromagnética choca con un conductor pueden suceder dos cosas. La primera es que se transformen en calor: este efecto tiene aplicación en los hornos de microondas. La segunda es que se reflejen en la superficie del conductor (como en un espejo).

Refracción

La velocidad de propagación de la radiación electromagnética en el vacío es c. La teoría electromagnética establece que:

c=\frac{1}{\sqrt{\epsilon_0\mu_0}}

siendo \epsilon_0 y μ0 la permitividad eléctrica y la permeabilidad magnética del vacío respectivamente.

En un medio material la permitividad eléctrica \epsilon tiene un valor diferente a \epsilon_0. Lo mismo ocurre con la permeabilidad magnética μ y, por tanto, la velocidad de la luz en ese medio v será diferente a c. La velocidad de propagación de la luz en medios diferentes al vacío es siempre inferior a c.

Cuando la luz cambia de medio experimenta una desviación que depende del ángulo con que incide en la superficie que separa ambos medios. Se habla, entonces, de ángulo incidente y ángulo de transmisión. Este fenómeno, denominado refracción, es claramente apreciable en la desviación de los haces de luz que inciden en el agua. La velocidad de la luz en un medio se puede calcular a partir de su permitividad eléctrica y de su permeabilidad magnética de la siguiente manera:

v=\frac{1}{\sqrt{\epsilon\mu}}

Dispersión

Dispersión de la luz blanca en un prisma.

La permitividad eléctrica y la permeabilidad magnética de un medio diferente del vacío dependen, además de la naturaleza del medio, de la longitud de onda de la radiación. De esto se desprende que la velocidad de propagación de la radiación electromagnética en un medio depende también de la longitud de onda de dicha radiación. Por tanto, la desviación de un rayo de luz al cambiar de medio será diferente para cada color (para cada longitud de onda). El ejemplo más claro es el de un haz de luz blanca que se "descompone" en colores al pasar por un prisma. La luz blanca es realmente la suma de haces de luz de distintas longitudes de onda, que son desviadas de manera diferente. Este fenómeno se llama dispersión. Es el causante de la aberración cromática, el halo de colores que se puede apreciar alrededor de los objetos al observarlos con instrumentos que utilizan lentes como prismáticos o telescopios.

Radiación por partículas aceleradas

Artículo principal: Fórmula de Larmor

Una consecuencia importante de la electrodinámica clásica es que una partícula cargada en movimiento acelerado (rectilíneo, circular o de otro tipo) debe emitir ondas electromagnéticas siendo la potencia emitida proporcional al cuadrado de su aceleración, de hecho la fórmula de Larmor para la potencia emitida viene dada por:

 P = \frac{q^2 a^2}{6 \pi \varepsilon_0 c^3}

Donde:

q\, es la carga eléctrica de la partícula.
a\, es la aceleración de la partícula.
\varepsilon_0\, la permitividad eléctrica del vacío.
c\, es la velocidad de la luz.

Un ejemplo de este fenómeno de emisión de radiación por parte de partículas cargadas es la radiación de sincrotrón.

Véase también

Notas

  1. [1] Agentes físicos en rehabilitación. Escrito por Michelle H. Cameron. Página 346. (books.google.es).

Enlaces externos


Wikimedia foundation. 2010.

Игры ⚽ Поможем написать курсовую

Mira otros diccionarios:

  • radiación electromagnética — cualquier tipo de radiación eléctrica y magnética, considerada como un espectro continuo de energía que se extiende desde los gamma, con una longitud de onda de 0,0011 Å hasta lasondas largas de radio, con longitudes de onda de más de 1 millón de …   Diccionario médico

  • Radiación electromagnética — La radiación electromagnética es una combinación de campos eléctricos y magnéticos oscilantes y perpendiculares entre sí que se propagan a través del espacio transportando energía de un lugar a otro. A diferencia de otros tipos de onda, como el… …   Enciclopedia Universal

  • Radiación ionizante — Saltar a navegación, búsqueda Señal de riesgo por radiación. Radiaciones ionizantes son aquellas radiaciones con energía suficiente para ionizar la materia, extrayendo los electrones de sus estados ligados al átomo. Existen otros procesos de… …   Wikipedia Español

  • Radiación térmica — Saltar a navegación, búsqueda Se denomina radiación térmica o radiación calorífica a la emitida por un cuerpo debido a su temperatura. Todos los cuerpos con temperatura superior a 0 K emiten radiación electromagnética, siendo su intensidad… …   Wikipedia Español

  • Radiación de fondo de microondas — Saltar a navegación, búsqueda Para otros usos de este término, véase Microondas (desambiguación). Mapa de anisotropías de la radiación de fondo de microondas obtenida por el satélite WMAP. En cosmolo …   Wikipedia Español

  • Radiación no ionizante — Saltar a navegación, búsqueda Señal de riesgo por radiación no ionizante Se entiende por radiación no ionizante aquella onda o partícula que no es capaz de arrancar electrones de la materia que ilumina produciendo, como mucho, excitaciones… …   Wikipedia Español

  • Radiación (desambiguación) — Saltar a navegación, búsqueda Radiación puede referirse a: En Física, la radiación es un modo de propagación de la energía a través del vacío. En sentido estricto refiere a la radiación electromagnética, aunque también se utiliza la expresión… …   Wikipedia Español

  • Radiación de sincrotrón — Saltar a navegación, búsqueda La radiación de sincrotrón es la radiación electromagnética generada por partículas cargadas (tales como electrones) que se mueven según una trayectoria curva a alta velocidad (una fracción apreciable de la velocidad …   Wikipedia Español

  • radiación infrarroja — Radiación electromagnética en la que las longitudes de onda se encuentran entre 10–5 y 10–4 m, y son más largas, por lo tanto, que las ondas de luz visible, pero más cortas que las ondas de radio. El choque de la radiación infrarroja con la… …   Diccionario médico

  • radiación sincrotrónica — Radiación electromagnética emitida por partículas cargadas moviéndose a velocidades cercanas a la de la luz cuando sus trayectorias son alteradas por la presencia de un campo magnético. Se llama así porque la emiten las partículas aceleradas en… …   Enciclopedia Universal

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”