Dualidad onda corpúsculo

Dualidad onda corpúsculo
Imagen ilustrativa de la dualidad onda-partícula, en el cual se puede ver cómo un mismo fenómeno puede tener dos percepciones distintas.

La dualidad onda-corpúsculo, también llamada dualidad onda-partícula, resolvió una aparente paradoja, demostrando que la luz puede poseer propiedades de partícula y propiedades ondulatorias.

De acuerdo con la física clásica existen diferencias entre onda y partícula. Una partícula ocupa un lugar en el espacio y tiene masa mientras que una onda se extiende en el espacio caracterizándose por tener una velocidad definida y masa nula.

Actualmente se considera que la dualidad onda-partícula es un “concepto de la mecánica cuántica según el cual no hay diferencias fundamentales entre partículas y ondas: las partículas pueden comportarse como ondas y viceversa”. (Stephen Hawking, 2001)

Éste es un hecho comprobado experimentalmente en múltiples ocasiones. Fue introducido por Louis-Victor de Broglie, físico francés de principios del siglo XX. En 1924 en su tesis doctoral propuso la existencia de ondas de materia, es decir que toda materia tenía una onda asociada a ella. Esta idea revolucionaria, fundada en la analogía con que la radiación tenía una partícula asociada, propiedad ya demostrada entonces, no despertó gran interés, pese a lo acertado de sus planteamientos, ya que no tenía evidencias de producirse. Sin embargo, Einstein reconoció su importancia y cinco años después, en 1929, De Broglie recibió el Nobel en Física por su trabajo.

Su trabajo decía que la longitud de onda λ de la onda asociada a la materia era

\lambda = \frac{h}{p} = \frac{h}{m v}

donde h es la constante de Planck y p es la cantidad de movimiento de la partícula de materia.

Contenido

Historia

Al finalizar el siglo XIX, gracias a la teoría atómica, se sabía que toda materia estaba formada por partículas elementales llamadas átomos. La electricidad se pensó primero como un fluido, pero Joseph John Thomson demostró que consistía en un flujo de partículas llamadas electrones, en sus experimentos con rayos catódicos. Todos estos descubrimientos llevaron a la idea de que una gran parte de la Naturaleza estaba compuesta por partículas. Al mismo tiempo, las ondas eran bien entendidas, junto con sus fenómenos, como la difracción y la interferencia. Se creía, pues, que la luz era una onda, tal y como demostró el Experimento de Young y efectos tales como la difracción de Fraunhofer.

Cuando se alcanzó el siglo XX, no obstante, aparecieron problemas con este punto de vista. El efecto fotoeléctrico, tal como fue analizado por Albert Einstein en 1905, demostró que la luz también poseía propiedades de partículas. Más adelante, la difracción de electrones fue predicha y demostrada experimentalmente, con lo cual, los electrones poseían propiedades que habían sido atribuidas tanto a partículas como a ondas.

Esta confusión que enfrentaba, aparentemente, las propiedades de partículas y de ondas fue resuelta por el establecimiento de la mecánica cuántica, en la primera mitad del siglo XX. La mecánica cuántica nos sirve como marco de trabajo unificado para comprender que toda materia puede tener propiedades de onda y propiedades de partícula. Toda partícula de la naturaleza, sea un protón, un electrón, átomo o cual fuese, se describe mediante una ecuación diferencial, generalmente, la Ecuación de Schrödinger. Las soluciones a estas ecuaciones se conocen como funciones de onda, dado que son inherentemente ondulatorias en su forma. Pueden difractarse e interferirse, llevándonos a los efectos ondulatorios ya observados. Además, las funciones de onda se interpretan como descriptores de la probabilidad de encontrar una partícula en un punto del espacio dado. Quiere decirse esto que si se busca una partícula, se encontrará una con una probabilidad dada por la raíz cuadrada de la función de onda.

En el mundo macroscópico no se observan las propiedades ondulatorias de los objetos dado que dichas longitudes de onda, como en las personas, son demasiado pequeñas. La longitud de onda se da, en esencia, como la inversa del tamaño del objeto multiplicada por la constante de Planck h, un número extremadamente pequeño.

Huygens y Newton

La luz, onda y corpúsculo. Dos teorías diferentes convergen gracias a la física cuántica.

Las primeras teorías comprensibles de la luz fueron expuestas por Christiaan Huygens, quien propuso una teoría ondulatoria de la misma, y en particular, demostrando que cada punto de un frente de onda que avanza es de hecho el centro de una nueva perturbación y la fuente de un nuevo tren de ondas. Sin embargo, su teoría tenía debilidades en otros puntos y fue pronto ensombrecida por la Teoría Corpuscular de Isaac Newton.

Aunque previamente Sir Isaac Newton, había discutido este prolegómeno vanguardista con Pierre Fermat, otro reconocido físico de la óptica en el siglo XVII, el objetivo de la difracción de la luz no se hizo patente hasta la célebre reunión que tuviera con el genial Karl Kounichi, creador del principio de primalidad y su máxima de secuencialidad, realizada en la campiña de Woolsthorpe durante la gran epidemia de Peste de 1665.

Apoyado en las premisas de sus contemporáneos, Newton propone que la luz es formada por pequeñas partículas, con las cuales se explica fácilmente el fenómeno de la reflexión. Con un poco más de dificultad, pudo explicar también la refracción a través de lentes y la separación de la luz solar en colores mediante un prisma.

Debido a la enorme estatura intelectual de Newton, su teoría fue la dominante por un periodo de un siglo aproximadamente, mientras que la teoría de Huygens fue olvidada. Con el descubrimiento de la difracción en el siglo XIX, sin embargo, la teoría ondulatoria fue recuperada y durante el siglo XX el debate entre ambas sobrevivió durante un largo tiempo.

Fresnel, Maxwell y Young

A comienzo del siglo XIX, con el experimento de la doble rendija, Young y Fresnel certificaron científicamente las teorías de Huygens. El experimento demostró que la luz, cuando atraviesa una rendija, muestra un patrón característico de interferencias similar al de las ondas producidas en el agua. La longitud de onda puede ser calculada mediante dichos patrones. Maxwell, a finales del mismo siglo, explicó la luz como la propagación de una onda electromagnética mediante las ecuaciones de Maxwell. Tales ecuaciones, ampliamente demostradas mediante la experiencia, hicieron que Huygens fuese de nuevo aceptado.

Einstein y los fotones

Efecto fotoeléctrico: La luz arranca electrones de la placa.

En 1905, Einstein logró una notable explicación del efecto fotoeléctrico, un experimento hasta entonces preocupante que la teoría ondulatoria era incapaz de explicar. Lo hizo postulando la existencia de fotones, cuantos de luz con propiedades de partículas.

En el efecto fotoeléctrico se observaba que si un haz de luz incidía en una placa de metal producía electricidad en el circuito. Presumiblemente, la luz liberaba los electrones del metal, provocando su flujo. Sin embargo, mientras que una luz azul débil era suficiente para provocar este efecto, la más fuerte e intensa luz roja no lo provocaba. De acuerdo con la teoría ondulatoria, la fuerza o amplitud de la luz se hallaba en proporción con su brillantez: La luz más brillante debería ser más que suficiente para crear el paso de electrones por el circuito. Sin embargo, extrañamente, no lo producía.

Einstein llegó a la conclusión de que los electrones eran expelidos fuera del metal por la incidencia de fotones. Cada fotón individual acarreaba una cantidad de energía E, que se encontraba relacionada con la frecuencia ν de la luz, mediante la siguiente ecuación:

E = h \nu \,\!

donde h es la constante de Planck (cuyo valor es 6,626 × 10−34 J·s). Sólo los fotones con una frecuencia alta (por encima de un valor umbral específico) podían provocar la corriente de electrones. Por ejemplo, la luz azul emitía unos fotones con una energía suficiente para arrancar los electrones del metal, mientras que la luz roja no. Una luz más intensa por encima del umbral mínimo puede arrancar más electrones, pero ninguna cantidad de luz por debajo del mismo podrá arrancar uno solo, por muy intenso que sea su brillo.

Einstein ganó el Premio Nobel de Física en 1921 por su teoría del efecto fotoeléctrico.

De Broglie

En 1924, el físico francés, Louis-Victor de Broglie (1892-1987), formuló una hipótesis en la que afirmaba que:

Toda la materia presenta características tanto ondulatorias como corpusculares comportándose de uno u otro modo dependiendo del experimento específico.

Para postular esta propiedad de la materia De Broglie se basó en la explicación del efecto fotoeléctrico, que poco antes había dado Albert Einstein sugiriendo la naturaleza cuántica de la luz. Para Einstein, la energía transportada por las ondas luminosas estaba cuantizada, distribuida en pequeños paquetes energía o cuantos de luz, que más tarde serían denominados fotones, y cuya energía dependía de la frecuencia de la luz a través de la relación: E=h\nu \; , donde \nu \; es la frecuencia de la onda luminosa y h \ \; la constante de Planck. Albert Einstein proponía de esta forma, que en determinados procesos las ondas electromagnéticas que forman la luz se comportan como corpúsculos. De Broglie se preguntó que por qué no podría ser de manera inversa, es decir, que una partícula material (un corpúsculo) pudiese mostrar el mismo comportamiento que una onda.

El físico francés relacionó la longitud de onda, λ (lambda) con la cantidad de movimiento de la partícula, mediante la fórmula:

\lambda = \frac{h}{mv}

donde λ es la longitud de la onda asociada a la partícula de masa m que se mueve a una velocidad v, y h es la constante de Planck. El producto mv\ \; es también el módulo del vector \vec p, o cantidad de movimiento de la partícula. Viendo la fórmula se aprecia fácilmente, que a medida que la masa del cuerpo o su velocidad aumenta, disminuye considerablemente la longitud de onda.

Esta hipótesis se confirmó tres años después para los electrones, con la observación de los resultados del experimento de la doble rendija de Young en la difracción de electrones en dos investigaciones independientes. En la Universidad de Aberdeen, George Paget Thomson pasó un haz de electrones a través de una delgada placa de metal y observó los diferentes esquemas predichos. En los Laboratorios Bell, Clinton Joseph Davisson y Lester Halbert Germer guiaron su haz a través de una celda cristalina.

La ecuación de De Broglie se puede aplicar a toda la materia. Los cuerpos macroscópicos, también tendrían asociada una onda, pero, dado que su masa es muy grande, la longitud de onda resulta tan pequeña que en ellos se hace imposible apreciar sus características ondulatorias.

De Broglie recibió el Premio Nobel de Física en 1929 por esta hipótesis. Thomson y Davisson compartieron el Nobel de 1937 por su trabajo experimental.

Naturaleza ondulatoria de los objetos mayores

Similares experimentos han sido repetidos con neutrones y protones, el más famoso de ellos realizado por Estermann y Otto Stern en 1929. Experimentos más recientes realizados con átomos y moléculas demuestran que actúan también como ondas.

Una serie de experimentos enfatizando la acción de la gravedad en relación con la dualidad onda-corpúsculo fueron realizados en la década de los 70 usando un interferómetro de neutrones. Los neutrones, parte del núcleo atómico, constituyen gran parte de la masa del mismo y por tanto, de la materia. Los neutrones son fermiones y esto, en cierto sentido, son la quintaesencia de las partículas. Empero, en el interferómetro de neutrones, no actúan sólo como ondas mecanocuánticas sino que también dichas ondas se encontraban directamente sujetas a la fuerza de la gravedad. A pesar de que esto no fue ninguna sorpresa, ya que se sabía que la gravedad podía desviar la luz e incluso actuaba sobre los fotones (el experimento fallido sobre los fotones de Pound y Rebka), nunca se había observado anteriormente actuar sobre las ondas mecanocuánticas de los fermiones, los constituyentes de la materia ordinaria.

En 1999 se informó de la difracción del fulereno de C60 por investigadores de la Universidad de Viena.[1] El fulereno es un objeto masivo, con una masa atómica de 720. La longitud de onda de De Broglie es de 2,5 picómetros, mientras que el diámetro molecular es de 1 nanómetro, esto es, 400 veces mayor. Hasta el 2005, éste es el mayor objeto sobre el que se han observado propiedades ondulatorias mecanocuánticas de manera directa. La interpretación de dichos experimentos aún crea controversia, ya que se asumieron los argumentos de la dualidad onda corpúsculo y la validez de la ecuación de De Broglie en su formulación.

Teoría y filosofía

La paradoja de la dualidad onda-corpúsculo es resuelta en el marco teórico de la mecánica cuántica. Dicho marco es profundo y complejo, además de imposible de resumir brevemente.

Cada partícula en la naturaleza, sea fotón, electrón, átomo o lo que sea, puede describirse en términos de la solución de una ecuación diferencial, típicamente de la ecuación de Schrödinger, pero también de la ecuación de Dirac. Estas soluciones son funciones matemáticas llamadas funciones de onda. Las funciones de onda pueden difractar e interferir con otras o consigo mismas, además de otros fenómenos ondulatorios predecibles descritos en el experimento de la doble rendija.

Las funciones de onda se interpretan a menudo como la probabilidad de encontrar la correspondiente partícula en un punto dado del espacio en un momento dado. Por ejemplo, en un experimento que contenga una partícula en movimiento, uno puede buscar que la partícula llegue a una localización en particular en un momento dado usando un aparato de detección que apunte a ese lugar. Mientras que el comportamiento cuántico sigue unas funciones determinísticas bien definidas (como las funciones de onda), la solución a tales ecuaciones son probabilísticas. La probabilidad de que el detector encuentre la partícula es calculada usando la integral del producto de la función de onda y su complejo conjugado. Mientras que la función de onda puede pensarse como una propagación de la partícula en el espacio, en la práctica el detector verá o no verá la partícula entera en cuestión, nunca podrá ver una porción de la misma, como dos tercios de un electrón. He aquí la extraña dualidad: La partícula se propaga en el espacio de manera ondulatoria y probabilística pero llega al detector como un corpúsculo completo y localizado. Esta paradoja conceptual tiene explicaciones en forma de la interpretación de Copenhague, el formulación de integrales de caminos o la teoría universos múltiples. Es importante puntualizar que todas estas interpretaciones son equivalentes y resultan en la misma predicción, pese a que ofrecen unas interpretaciones filosóficas muy diferentes.

Mientras la mecánica cuántica hace predicciones precisas sobre el resultado de dichos experimentos, su significado filosófico aún se busca y se discute. Dicho debate ha evolucionado como una ampliación del esfuerzo por comprender la dualidad onda-corpúsculo. ¿Qué significa para un protón comportarse como onda y como partícula? ¿Cómo puede ser un antielectrón matemáticamente equivalente a un electrón moviéndose hacia atrás en el tiempo bajo determinadas circunstancias, y qué implicaciones tiene esto para nuestra experiencia unidireccional del tiempo? ¿Cómo puede una partícula teletransportarse a través de una barrera mientras que un balón de fútbol no puede atravesar un muro de cemento? Las implicaciones de estas facetas de la mecánica cuántica aún siguen desconcertando a muchos de los que se interesan por ella.

Algunos físicos íntimamente relacionados con el esfuerzo por alcanzar las reglas de la mecánica cuántica han visto este debate filosófico sobre la dualidad onda-corpúsculo como los intentos de sobreponer la experiencia humana en el mundo cuántico. Dado que, por naturaleza, este mundo es completamente no intuitivo, la teoría cuántica debe ser aprendida bajo sus propios términos independientes de la experiencia basada en la intuición del mundo macroscópico. El mérito científico de buscar tan profundamente por un significado a la mecánica cuántica es, para ellos, sospechoso. El teorema de Bell y los experimentos que inspira son un buen ejemplo de la búsqueda de los fundamentos de la mecánica cuántica. Desde el punto de vista de un físico, la incapacidad de la nueva filosofía cuántica de satisfacer un criterio comprobable o la imposibilidad de encontrar un fallo en la predictibilidad de las teorías actuales la reduce a una posición nula, incluso al riesgo de degenerar en una pseudociencia.

Aplicaciones

La dualidad onda-corpúsculo se usa en el microscopio de electrones, donde la pequeña longitud de onda asociada al electrón puede ser usada para ver objetos mucho menores que los observados usando luz visible.

Véase también

Referencias

Notas

  1. Nature, volumen 401, páginas de la 680 a 682: Wave-particle duality of C60 por M. Arndt, O. Nairz, J. Voss-Andreae, C. Keller, G. van der Zouw, A. Zeilinger, 14 de octubre de 1999. Naturaleza onda corpúsculo del Fulereno C60 (pdf) (en inglés)


Wikimedia foundation. 2010.

Игры ⚽ Нужен реферат?

Mira otros diccionarios:

  • Dualidad onda corpúsculo — De acuerdo con la física clásica existen diferencias entre onda y partícula. Una partícula ocupa un lugar en el espacio y tiene masa mientras que una onda se extiende en el espacio caracterizándose por tener una velocidad definida y masa nula.… …   Enciclopedia Universal

  • Dualidad onda-partícula — La dualidad onda partícula, también denominada dualidad onda corpúsculo, constituye una propiedad básica de la mecánica cuántica y consiste en la capacidad de las partículas subatómicas de comportarse o de tener propiedades tanto de partículas… …   Enciclopedia Universal

  • Dualidad — Saltar a navegación, búsqueda Para el concepto filosófico ó teológico, véase: Dualismo Para el concepto matemático, véase: Dualidad (matemáticas) Dualidad de Poincaré Dualidad de Pontryagin Para el concepto físico, véase: Dualidad onda corpúsculo …   Wikipedia Español

  • Onda (física) — Para otros usos de este término, véase Onda (desambiguación). Ondas propagadas en agua …   Wikipedia Español

  • Longitud de onda — Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas. Puedes añadirlas así o avisar …   Wikipedia Español

  • Fotón — Saltar a navegación, búsqueda Para otros usos de este término, véase Fotón (desambiguación). Fotón (γ) Fotones emitidos en un rayo coherente por un láser …   Wikipedia Español

  • Radiación electromagnética — Para los aspectos teóricos, véase onda electromagnética. La radiación electromagnética es una combinación de campos eléctricos y magnéticos oscilantes, que se propagan a través del espacio transportando energía de un lugar a otro.[1] A diferencia …   Wikipedia Español

  • Efecto fotoeléctrico — Saltar a navegación, búsqueda Diagrama del efecto fotoeléctrico. Los fotones incidentes son absorbidos por los electrones del medio dotándoles de energía suficiente para escapar de éste. El efecto fotoeléctrico consiste en la emisión de… …   Wikipedia Español

  • Experimento de Young — Saltar a navegación, búsqueda El experimento de Young, también denominado experimento de la doble rendija, fue realizado en 1801 por Thomas Young, en un intento de discernir sobre la naturaleza corpuscular u ondulatoria de la luz. Young comprobó… …   Wikipedia Español

  • Luz — Para otros usos de este término, véase Luz (desambiguación). Rayo de luz solar d …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”