- Función de densidad de probabilidad
-
En teoría de la probabilidad, la función de densidad de probabilidad, función de densidad, o, simplemente, densidad de una variable aleatoria continua es una función, usualmente denominada f(x) que describe la densidad de la probabilidad en cada punto del espacio de tal manera que la probabilidad de que la variable aleatoria tome un valor dentro de un determinado conjunto sea la integral de la función de densidad sobre dicho conjunto.
Contenido
Definición
Una función de densidad de probabilidad (FDP) es una función matemática que caracteriza el comportamiento probable de una población. Es una función f(x) que especifica la posibilidad relativa de que una variable aleatoria continua X tome un valor cercano a x, y se define como la probabilidad de que X tome un valor entre x y x+dx, dividido por dx, donde dx es un número infinitesimalmente pequeño. La mayoría de las funciones de densidad de probabilidad requieren uno o más parámetros para especificarlas totalmente.
La probabilidad de que una variable aleatoria continua X esté ubicada entre los valores a y b está dada por el intervalo de la FDP, f(x), comprendido en el rango entre a y b. ≤ < = ∫ a b Pr(a x b) f (x)dx La FDP es la derivada (cuando existe) de la función de distribución: f x dF x dx ( ) = ( ) En situaciones prácticas, la FDP utilizada se elige entre un número relativamente pequeño de FDP comunes, y la labor estadística principal consiste en estimar sus parámetros. Por lo tanto, a los efectos de los inventarios, es necesario saber qué FDP se ha utilizado e indicarlo en la documentación de evaluación de la incertidumbre.
La definición formal de la función de densidad requiere de conceptos de la teoría de la medida. Si una variable aleatoria X sigue una función de probabilidad X*P su densidad con respecto a una medida de referencia μ es la derivada de Radon–Nikodym
Es decir, ƒ es una función con la propiedad de que
para cada conjunto medible A.
Hay que advertir que la función de densidad no es propiamente única: dos funciones distintas pueden representar la misma distribución de probabilidad si son distintas únicamente en un conjunto de medida nula. Además, que puede haber distribuciones de probabilidad que carezcan de función de densidad: sucede cuando, sin ser discretas, concentran su probabilidad en conjuntos de medida nula; así sucede con la distribución de Cantor cuando se toma la de Lebesgue como medida de referencia.
Cuando, como ocurre normalmente en las aplicaciones, X es una variable aleatoria real y μ es la medida de Lebesgue, la función de densidad es una función tal que
De modo que si F es la función de distribución de X, entonces
y
Intuitivamente, se puede pensar que ƒ(x) dx es la probabilidad de que X asuma valores en el intervalo infinitesimal [x, x + dx].
Propiedades
De las propiedades de la función de distribución se siguen las siguientes propiedades de la fdp (a veces visto como pdf del inglés):
- para toda x.
- El área total encerrada bajo la curva es igual a 1:
- La probabilidad de que X tome un valor en el intervalo [a,b] es el área bajo la curva de la función de densidad en ese intervalo o lo que es lo mismo, la integral definida en dicho intervalo. La gráfica f(x) se conoce a veces como curva de densidad.
Algunas FDP están declaradas en rangos de a , como la de la distribución normal.
Enlaces externos
- [1] Simulación de la obtención de la probabilidad en un intervalo a partir de la función de densidad de una variable continua con R (lenguaje de programación)
Véase también
Categoría:- Distribuciones de probabilidad
Wikimedia foundation. 2010.