- Función definida a trozos
-
En matemáticas, una función definida a trozos (también conocida como función por partes) es una función cuya definición (la regla que define la dependencia) cambia dependiendo del valor de la variable independiente. Matemáticamente, una función real f (definida a trozos) de una variable real x es la relación cuya definición está dada por varios conjuntos disjuntos de su dominio (conocidos como subdominios).
La palabra "A trozos" se usa para describir cualquier propiedad de una función definida a trozos que se cumple para cada trozo aunque podría no cumplirse para todo el dominio de f. Una función es diferenciable a trozos o continuamente diferenciable a trozos si cada trozo es diferenciable a lo largo del dominio. En Análisis Convexo, la noción de la derivada puede ser reemplazada por la de subderivada para funciones definidas a trozos. Una función f definida a trozos puede estar representada por varias expresiones matemáticas (algebraicas y/o trascendentales) de cualquier tipo.
Contenido
Notación e interpretación
Las funciones definidas a trozos se expresan con una notación funcional común, donde el cuerpo de la función es una lista de expresiones matemáticas asociadas a un subdominio (intervalo). Por ejemplo, sea la función f definida a trozos de la función valor absoluto:
Para todos los valores de x menores que cero, la primera expresión matemática (la función -x) es utilizada, lo que altera el signo del valor que asignamos a la variable independiente haciendo el resultado siempre positivo. Para todos los valores de x mayores o iguales que cero, la segunda expresión matemática (la función x) es utilizada.
Sea la función definida a trozos f(x), se evalúan varias expresiones del dominio de f:
x f(x) Función utilizada −3 3 −x −0.1 0.1 −x 0 0 x 1/2 1/2 x 5 5 x Por lo tanto, para evaluar una función definida a trozos en un determinado valor del dominio, seleccionamos la expresión matemática cuyo subdominio contiene el valor a evaluar para que el valor del rango sea el correcto.
Continuidad
Una función definida a trozos es continua en un intervalo dado si está definida en todo el intervalo, las expresiones matemáticas apropiadas que constituyen a la función son continuas en ese intervalo, y no hay discontinuidad en ningún punto extremo de los subdominios en ese intervalo.
La función que está a la derecha, por ejemplo, es una función definida a trozos continua en todos sus subdominios, pero no es continua en todo el dominio. Dicha función tiene un salto de discontinuidad (un agujero) en x0.
Véase también
Ejemplos comunes
- Valor Absoluto
- Función unitaria de Heaviside
- Función lineal definida a trozos
- Spline
- B-spline
Categoría:- Tipos de funciones
Wikimedia foundation. 2010.