Teorema fundamental de la teoría de Galois

Teorema fundamental de la teoría de Galois

En matemáticas, el teorema fundamental de la teoría de Galois es un resultado que describe la estructura de ciertos tipos de extensiones de cuerpos.

En su forma más básica el teorema dice que dada una extensión de cuerpos E/F que sea finita y Galois, existe una correspondencia uno a uno entre sus cuerpos intermedios (cuerpos K que satisfacen F \subseteq K \subseteq E; también llamados subextensiones de E/F) y los subgrupos de su Grupo de Galois.

Contenido

Descripción explícita de la correspondencia

Para extensiones finitas, la correspondencia puede describirse explícitamente como sigue:

  • Para cada subgrupo H de Gal(E/F), el cuerpo correspondiente, denotado normalmente EH, es el conjunto de aquellos elementos de E que son fijos para cada automorfismo en H.
  • Para cada cuerpo intermedio K de E/F, el subgrupo correspondiente es precisamente Aut(E/K), esto es, el conjunto de aquellos automorfismos en Gal(E/F) que dejan fijo a cada elemento de K.

Por ejemplo, el cuerpo más "grande" E se corresponde al subgrupo trivial de Gal(E/F), y el cuerpo base F se corresponde al grupo completo: Gal(E/F).

Propiedades de la correspondencia

La correspondencia tiene las siguientes propiedades útiles:

  • Es revertible por inclusión. La inclusión de subgrupos H1 \subseteq H2 se da si y sólo si se da también la inclusión en cuerpos: EH1 \supseteq EH2.
  • Los grados de las extensiones están relacionados con el orden de los grupos de manera consistente con la propiedad anterior. Concretamente, si H es un subgrupo de Gal(E/F), entonces |H| = [E:EH] y [Gal(E/F):H] = [EH:F].
  • El cuerpo EH es una Extensión normal de F si y sólo si H es un subgrupo normal de Gal(E/F). En este caso, la restricción de los elementos de Gal(E/F) al EH induce un isomorfismo entre Gal(EH/F) y el grupo cociente Gal(E/F)/H.

Aplicaciones

El teorema transforma el problema de clasificar los cuerpos intermedios de E/F en el problema menos difícil de listar los subgrupos de cierto grupo finito.

Por ejemplo, para demostrar que la ecuación general de quinto grado no es resoluble por radicales (ver teorema de Abel-Ruffini), se debe establecer el problema en términos de extensiones radicales (extensiones de la forma F(α) donde α es una n-sima raíz de algún elemento de F), y entonces usar el teorema fundamental para convertir esta afirmación en un problema sobre grupos que ya podamos atacar más directamente.

Las teorías como Teoría de Kummer y la teoría de cuerpos de clases se derivan del teorema fundamental.

Caso infinito

Existe también una versión de este teorema fundamental de la teoría de Galois que se aplica a extensiones algebraicas infinitas, que además son normales y separables. Se requiere para ello definir una cierta estructura topológica, la Topología de Krull sobre el grupo de Galois; entonces sólo aquellos subgrupos que sean también cerrados de la topología serán relevantes para la correspondencia del teorema.


Wikimedia foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Mira otros diccionarios:

  • Teorema fundamental de la teoría de Galois — En matemáticas, el teorema fundamental de la teoría de Galois es un resultado que describe la estructura de ciertos tipos de extensiones de cuerpos. En su forma más básica el teorema dice que dada una extensión de cuerpos E/F que sea finita y… …   Enciclopedia Universal

  • Teorema fundamental — En matemáticas, hay numerosos teoremas que reciben el nombre de teorema fundamental de distintos campos. Los nombres son generalmente fieles a la tradición, de forma que, por ejemplo, el teorema fundamental de la aritmética se refiere a lo que… …   Wikipedia Español

  • Teoría de grupos — Diagrama de Cayley del grupo libre de orden dos. En álgebra abstracta, la teoría de grupos estudia las estructuras algebraicas conocidas como grupos. Sus objetivos son, entre otros, la clasificación de los grupos, sus propiedades y sus… …   Wikipedia Español

  • Problema de Galois inverso — Problemas no resueltos de la matemática: Todo polinomio con coeficientes racionales lleva asociado un grupo de Galois, pero ¿es cierto que todo grupo finito es grupo de Galois de algún polinomio? En teoría de Galois, el problema de Galois inverso …   Wikipedia Español

  • Grupo de Galois — En matemática, un grupo de Galois es un grupo asociado a un cierto tipo de extensión de cuerpo. El estudio de las extensiones de cuerpos (y los polinomios que dan lugar a ellas) mediante el grupo de Galois es conocido como Teoría de Galois. Para… …   Wikipedia Español

  • Extensión de Galois — Saltar a navegación, búsqueda En álgebra abstracta, una extensión de cuerpo algebraica E/K se dice extensión de Galois (o extensión galoisiana) si es una extensión normal y separable. En este caso, se puede considerar el grupo de Galois de la… …   Wikipedia Español

  • Teoría de Iwasawa — En teoría de números, la Teoría de Iwasawa es una teoría de módulo de Galois de los grupos de clases ideales, que fuera postulada por Kenkichi Iwasawa, hacia 1950, como parte de la teoría de los campos ciclotómicos. A comienzos de 1970, Barry… …   Wikipedia Español

  • Teorema de Abel-Ruffini — En matemáticas el teorema de Abel o teorema de Abel Ruffini postula que no puede resolverse por radicales las ecuaciones polinómicas generales de grado igual o superior a cinco. Es decir, no es posible encontrar las soluciones de la ecuación… …   Wikipedia Español

  • Teoría de ecuaciones — En matemáticas, la teoría de ecuaciones es una rama del álgebra tradicional. Incluye temas como polinomios, ecuaciones algebraicas, identidades de Viète, teorema de Sturm, y la aplicación de resultados sobre matrices y determinantes a la solución …   Wikipedia Español

  • Teoría del orden — La teoría del orden es una rama de la matemática que estudia varias clases de relaciones binarias que capturan la noción intuitiva del orden matemático. Este artículo da una introducción detallada a este campo e incluye algunas de las… …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”