- Traslación (geometría)
-
En geometría, una traslación es una isometría en el espacio euclídeo caracterizada por un vector , tal que, a cada punto P de un objeto o figura se le hace corresponder otro punto P' , tal que:
Definición de traslaciones
Las traslaciones pueden entenderse como movimientos directos sin cambios de orientación, es decir, mantienen la forma y el tamaño de las figuras u objetos trasladados, a las cuales deslizan según el vector. Dado el carácter de isometría para cualesquiera puntos P y Q se cumple la siguiente identidad entre distancias:
Más aún se cumple que:
Notas:
- La figura trasladada es idéntica a la figura inicial.
- La figura trasladada conserva la misma orientación que la figura original.
Representación matricial
Puesto que una traslación es un caso particular de transformación afín pero no una transformación lineal, generalmente se usan coordenadas homogéneas para representar la traslación mediante una matriz y poder así expresarla como una transformación lineal sobre un espacio de dimensión superior.
Así un vector tridimensional w = (wx, wy, wz) puede ser reescrito usando cuatro coordenadas homogéneas comow = (wx, wy, wz, 1). En esas condiciones una traslación puede ser repretentada por una matriz como:
Ya que como puede verse, la multiplicación de esta matriz por la representación en coordenadas homogéneas de un vector da lugar al resultado esperado:
La inversa de una matriz de traslación puede obtenerse cambiando el signo de la dirección del vector desplazamiento
Similarmente, el producto de dos matrices de traslación viene dado por:
Debido a que la suma de vectores es conmutativa, la multiplicaciónde matrices de traslación es también conmutativa, a diferencia de lo que sucede con matrices arbitrarias, que no necesariamente representan traslaciones.
Véase también
Categorías:- Transformaciones geométricas
- Simetría euclidiana
Wikimedia foundation. 2010.