Teoría de matrices

Teoría de matrices

La teoría de matrices es un rama de las matemáticas que se centra en el estudio de matrices. Inicialmente una rama secundaria del álgebra lineal, ha venido cubriendo los temas relacionados con la teoría de grafos, el álgebra, la combinatoria, y la estadística también.

Las matrices ahora se utilizan para múltiples aplicaciones y sirven, en particular, para representar los coeficientes de los sistemas de ecuaciones lineales o para representar las aplicaciones lineales; en este último caso las matrices desempeñan el mismo papel que los datos de un vector para las aplicaciones lineales.

Contenido

Historia

El estudio de las matrices es muy antiguo. Los cuadrados latinos y los cuadrados mágicos se estudiaron desde hace mucho tiempo. Leibniz, uno de los dos fundadores del análisis, desarrolló la teoría de los determinantes en 1693 para facilitar la Resolución de las ecuaciones lineales. Gabriel Cramer tuvo que profundizar esta teoría, presentando el método de Cramer en 1750. En los años 1800, el método de eliminación de Gauss-Jordan se puso a punto. Fue James Joseph Sylvester quien utilizó por primera vez el término « matriz » en 1850. Cayley, Hamilton, Hermann Grassmann, Frobenius y John von Neumann cuentan entre los matemáticos famosos que trabajaron sobre la teoría de las matrices.

En 1925, Werner Heisenberg redescubre el cálculo matricial fundando una primera formulación de lo que iba a pasar a ser la mecánica cuántica. Se le considera a este respecto como uno de los padres de la mecánica cuántica.

Descripción, introducción elemental

Véase también: Matriz (matemática)

Una matriz es un cuadro rectangular de números. Una matriz puede identificarse a una aplicación lineal entre dos espacios vectoriales de dimensión finita. Así la teoría de las matrices habitualmente se considera como una rama del álgebra lineal. Las matrices cuadradas desempeñan un papel particular, porque el conjunto de matrices de orden n (n entero natural no nulo dado) posee propiedades de « estabilidad » de operaciones.

Los conceptos de matriz estocástica y matriz doblemente estocástica son herramientas importantes para estudiar los procesos estocásticos, en probabilidad y en estadística.

Las matrices definidas positivas aparecen en la búsqueda de máximos y mínimos de funciones a valores reales, y a varias variables.

Es también importante disponer de una teoría de matrices a coeficientes en un anillo. En particular, las matrices a coeficientes en el anillo de polinomios se utilizan en teoría de mandos.

En matemáticas puras, los anillos de matrices pueden proporcionar un rico campo de contraejemplos para conjeturas matemáticas.

Matriz y grafos

En teoría de los grafos, a todo grafo etiquetado corresponde la matriz de adyacencia. Una matriz de permutación es una matriz que representa una permutación; matriz cuadrada cuyos coeficientes son 0 o 1, con un solo 1 en cada línea y cada columna. Estas matrices se utilizan en combinatorio.

En la teoría de grafos, se llama matriz de un grafo a la matriz que indica en la línea i y la columna j el número de aristas que enlazan el vértice i al vértice j. En un grafo no orientado, la matriz es simétrica. La suma de los elementos de una columna permite determinar el grado de un vértice. La matriz Mn indica en la línea i y la columna j el número de caminos a n aristas que adjuntan el vértice i al vértice j.

Algunos teoremas

Véase también

Referencias

Enlaces externos


Wikimedia foundation. 2010.

Игры ⚽ Поможем сделать НИР

Mira otros diccionarios:

  • Teoría de Matrices — Saltar a navegación, búsqueda La teoría de matrices es un rama de las matemáticas que se centra en el estudio de matrices. Inicialmente una rama secundaria del álgebra lineal, ha venido cubriendo los temas relacionados con la teoría de grafos, el …   Wikipedia Español

  • Teoría de grafos — Diagrama de un grafo con 6 vértices y 7 aristas. En matemáticas y en ciencias de la computación, la teoría de grafos (también llamada teoría de las gráficas) estudia las propiedades de los grafos (también llamadas gráficas). Un grafo es un… …   Wikipedia Español

  • Teoría de grupos — Diagrama de Cayley del grupo libre de orden dos. En álgebra abstracta, la teoría de grupos estudia las estructuras algebraicas conocidas como grupos. Sus objetivos son, entre otros, la clasificación de los grupos, sus propiedades y sus… …   Wikipedia Español

  • Teoría de ecuaciones — En matemáticas, la teoría de ecuaciones es una rama del álgebra tradicional. Incluye temas como polinomios, ecuaciones algebraicas, identidades de Viète, teorema de Sturm, y la aplicación de resultados sobre matrices y determinantes a la solución …   Wikipedia Español

  • Teoría de cuerpos — La teoría de cuerpos es una rama de la matemática que estudia las propiedades de los cuerpos. Un cuerpo es una entidad matemática para la cual la adición, sustracción, multiplicación y división están bien definidas. Contenido 1 Historia 2… …   Wikipedia Español

  • Matriz (matemática) — Se ha sugerido que Teoría de Matrices sea fusionado en este artículo o sección (discusión). Una vez que hayas realizado la fusión de artículos, pide la fusión de historiales aquí. Para otros usos de este término, véase Matriz. En matemáticas, una …   Wikipedia Español

  • Mecánica matricial — La Mecánica matricial es una formulación de la mecánica cuántica creada por Werner Heisenberg, Max Born y Pascual Jordan en 1925. La mecánica matricial fue la primera definición completa y correcta de la mecánica cuántica. Extiende el modelo de… …   Wikipedia Español

  • Vector propio y valor propio — Fig. 1. En esta transformación de la Mona Lisa, la imagen se ha deformado de tal forma que su eje vertical no ha cambiado. (nota: se han recortado las esquinas en la imagen de la derecha) …   Wikipedia Español

  • Werner Heisenberg — Werner Karl Heisenberg Werner Heisenberg en 1933 …   Wikipedia Español

  • Áreas de las matemáticas — Esta página o sección está siendo traducida del idioma inglés a partir del artículo Areas of mathematics, razón por la cual puede haber lagunas de contenidos, errores sintácticos o escritos sin traducir. Puedes colaborar con Wikipedia …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”