Biomecánica

Biomecánica

Biomecánica

Glóbulos rojos.

La biomecánica es una disciplina científica que tiene por objeto el estudio de las estructuras de carácter mecánico que existen en los seres vivos, fundamentalmente del cuerpo humano. Esta área de conocimiento se apoya en diversas ciencias biomédicas, utilizando los conocimientos de la mecánica, la ingeniería, la anatomía, la fisiología y otras disciplinas, para estudiar el comportamiento del cuerpo humano y resolver los problemas derivados de las diversas condiciones a las que puede verse sometido.

La biomecánica está íntimamente ligada a la biónica y usa algunos de sus principios ha tenido un gran desarrollo en relación con las aplicaciones de la ingeniería a la medicina, la bioquímica y el medio ambiente, tanto a través de modelos matemáticos para el conocimiento de los sistemas biológicos como en lo que respecta a la realización de partes u órganos del cuerpo humano y también en la utilización de nuevos métodos diagnósticos.

Una gran variedad de aplicaciones incorporadas a la práctica médica; desde la clásica pata de palo, a las sofisticadas ortopédias con mando mioeléctrico y de las válvulas cardiacas a los modernos marcapasos existe toda una tradición e implantación de prótesis.

Hoy en día es posible aplicar con éxito, en los procesos que intervienen en la regulación de los sistemas modelos matemáticos que permiten simular fenómenos muy complejos en potentes ordenadores, con el control de un gran número de parámetros o con la repetición de su comportamiento.

Contenido

Historia y desarrollo

La biomecánica se estableció como disciplina reconocida y como área de investigación autónoma en la segunda mitad del siglo XX en gran parte gracias a los trabajos de Y. C. Fung cuyas investigaciones a lo largo de cuatro décadas marcaron en gran parte los temas de interés en cada momento de esta disciplina.[1]

Circulación sanguínea

Históricamente uno de los primeros problemas abordados por el enfoque biomecánico moderno, resultó de intento de aplicar las ecuaciones de Navier-Stokes a la comprensión del riego sanguíneo.[2] Aunque usualmente se considera a la sangre como un fluido newtoniano incompresible, esta modelización falla cuando se considera el flujo sanguíneo en las arteriolas o capilares. A la escala de esas conducciones, los efectos del tamaño finito de las células sanguíneas o eritrocitos individuales son signitivativos, y la sangre no puede ser modelada como un medio continuo. Más concretamente, cuando el diámetro del vaso sanguíneo es ligeramente mayor que el diametro del erotrocito, entonces aparece el efecto Fahraeus–Lindquist y existe una disminución en la tensión tangente al vaso. Así a medida que el diámetro del vaso sanguíneo disminuye, los glóbulos rojos tienen que aplastarse a lo largo del vaso y frecuentemente sólo pueden pasar de uno en uno. En este caso, se da un efecto Fahraeus–Lindquist inverso y la tensión tangencial del vaso se incrementa.

Huesos

Otro desarrollo importante de la biomecánica fue la búsqueda de ecuaciones constitutivas que modelaran adecuadamente las propiedades mecánicas de los huesos.

Mecánicamente los huesos son estructuras mecánicas anisotropas, más exactamente tienen propiedades diferentes en las direcciones longitudinales y transversales. Aunque sí son transversalmente isótropos, no son globalmente isótropos. Las relaciones de tensión-deformación en los huesos pueden ser modelados usando una generalización de la ley de Hooke, para materiales ortotrópicos:

\sigma_{ij} = \sum_{k,l} C_{ijkl}\varepsilon_{kl}

Donde C_{ijmn} = C_{jimn} = C_{mnij}\,, existiendo sólo cinco constantes independientes que son función de:

E_l, E_t\,, los módulos de Young en dirección longitudinal y transversal.
\nu_{tt}, \nu_{tl}\,, los dos coeficientes de Poisson.
G_t\,, el módulo de elasticidad transversal.

Tejido muscular

Existen tres tipos de músculo:

  • Músculo liso (no estriado): El estómago, el sistema vascular, y la mayor parte del tracto digestivo están formados por músculo liso. Este tipo de músculo se mueve involuntariamente.
  • Músculo miocardíaco (estriado): Los cardiomiocitos son un tipo altamente especializado de célula. Estas células se contraen involuntariamente y están situadas en la pared del corazón, actúan conjuntamente para producir latido sincronizados.
  • Músculo esquelético (estriado): Es un músculo que desarrolla un esfuerzo sostenido y generalmente voluntario. Un modelo ampliamente usado para este tipo de músculo, es la ecuación de Hill que puede simular adecudamente el tétanos:

\left(v+b\right)(P+a) = b(P_0+a)\,

Donde:

P\,, es la tensión o cargas del músculo.
v\,, la velocidad de contracción.
P_0\,, es la máxima carga o tensión que se puede producir en el músculo.
a, b\,, son dos constantes que caracterizan el músculo.

Esta ecuación puede describirse en términos de la tensión y la velocidad de deformación como:

\left(\dot\varepsilon + \bar{b}\right)(\sigma+\bar{a}) = \bar{b}(\sigma_0+\bar{a})\,

Tejidos blandos

Durante la década de 1970, varios investigadores que trabajaban en biomecánica iniciaron un programa de caracterización de las propiedades mecánicas de los tejidos blandos, buscando ecuaciones constitutivas fenomenológicas para su comportamiento mecánico.

Los primeros trabajos se concentraron en tejidos blandos como los tendores, los ligamentos y el cartílago son combinaciones de una matriz de proteinas y un fluido. En cada uno de estos tejidos el principal elemento portante es el colágeno, aunque la cantidad y la calidad del colágono varía de acuerdo con la función que cada tejido realiza:

  • La función de los tendones es conectar el músculo con el hueso y está sujeto a cargas de tracción. Los tendones deben ser fuertes para facilitar el movimiento del cuerpo, pero al mismo tiempo ser flexibles para prevener el daño a los tejidos musculares.
  • Los ligamentos conectan los hueos entre sí, y por tanto son más rígidos que los tendones.
  • El cartílago, por otro lado, está solicitado primariamente con compresión y actúa como almohadillado en las articulaciones para distribuir las cargas entre los huesos. La capacidad resistente del cartículo en compresión se deriva principalmente del colágeno, como en tendones y ligaments, aunque en este tegido el colágeno tiene una configuración anudada, soportada por uniones de cruce de gicosaminoglicanos que también permiten alojar agua para crear un tejido prácticamente incompresible capaz de soportar esfuerzos de compresión adecudadamente.

Más recientemente, se han desarrollado modelos biomecánicos para otros tejidos blandos como la piel y los órganos internos. Este interés ha sido promovido por la necesidad de realismo en la simulaciones de interés médico.

Subdisciplinas

La Biomecánica está presente en diversos ámbitos, aunque tres de ellos son los más destacados en la actualidad:

  • La biomecánica médica, evalúa las patologías que aquejan al hombre para generar soluciones capaces de evaluarlas, repararlas o paliarlas.
  • La biomecánica deportiva, analiza la práctica deportiva para mejorar su rendimiento, desarrollar técnicas de entrenamiento y diseñar complementos, materiales y equipamiento de altas prestaciones.El objetivo general de la investigación biomecánica deportiva es desarrollar una comprensión detallada de los deportes mecánicos específicos y sus variables de desempeño para mejorar el rendimiento y reducir la incidencia de lesiones. Esto se traduce en la investigación de las técnicas específicas del deporte, diseñar mejor el equipo deportivo, vestuario, y de identificar las prácticas que predisponen a una lesión. Dada la creciente complejidad de la formación y el desempeño en todos los niveles del deporte de competencia, no es de extrañar que los atletas y entrenadores estén recurriendo en la literatura de investigación sobre la biomecánica aspectos de su deporte para una ventaja competitiva.
  • La biomecánica ocupacional, estudia la interacción del cuerpo humano con los elementos con que se relaciona en diversos ámbitos (en el trabajo, en casa, en la conducción de automóviles, en el manejo de herramientas, etc) para adaptarlos a sus necesidades y capacidades. En este ámbito se relaciona con otra disciplina como es la ergonomía.Últimamente se ha hecho popular y se ha adoptado la Biomecánica ocupacional que proporciona las bases y las herramientas para reunir y evaluar los procesos biomecánicas en lo que se refiera a la actual evolución de las industrias, con énfasis en la mejora de la eficiencia general de trabajo y la prevención de lesiones relacionadas con el trabajo, esta está íntimamente relacionada con la ingeniería médica y de información de diversas fuentes y ofrece un tratamiento coherente de los principios que subyacen a la biomecánica bien diseñado y ergonomía de trabajo que es ciencia que se encarga de adaptar el cuerpo humano a las tareas y las herramientas de trabajo.

Metodología

Muchos de los conocimientos generados por la biomecánica se basan en lo que se conoce como modelos biomecánicos. Estos modelos permiten realizar predicciones sobre el comportamiento, resistencia, fatiga y otros aspectos de diferentes partes del cuerpo cuando están sometidos a unas condiciones determinadas. Los estudios biomecánicos se sirven de distintas técnicas para lograr sus objetivos. Algunas de las más usuales son:

  • Análisis de fotogrametría. Análisis de movimientos en 3D basado en tecnología de vídeo digital. Una vez procesadas las imágenes capturadas, la aplicación proporciona información acerca del movimiento tridimensional de las personas o de los objetos en el espacio.
  • Análisis de comportamiento tensión-deformación directo. Este tipo de análisis se ocupa de determinar la "resistencia" de un material biológico ante la ejecución de una fuerza que actúa sobre este. Estas fuerzas, en sentido general, pueden ser de tipo compresivo o bien de tipo tracción y generarán en la estuctura dos cambios fundamentales.
  • Biomecánica computacional. Se refiere a las simulaciones computerizadas de sistemas biomecánicos, tanto para poner a prueba modelos teóricos y refinarlos, como para las aplicaciones técnicas.

Cambios en la tensión

Nos referimos como tensión mecánica a al esfuerzo interno por unidad de área que experimenta el material frente a la aplicación de la fuerza, cualquiera sea ésta y que corresponde a los fenómenos descritos por la Tercera Ley de Newton (Acción y Reacción). De acuerdo con este principio, la aplicación de un nivel determinado de deformación sobre un material flexible generará una tensión más pequeña que en otro material más rígido, que bajo la misma deformación experimentará una mayor tensión. La relación entre el esfuerzo aplicado y las deformaciones experimentadas, recibe el nombre de rigidez, y depende del tipo de esfuerzo que sea (de compresión, de flexión, torsional, etc.).

Cambios en la forma

Cuando se somete a un objeto cualquiera a la aplicación de una fuerza, en algún momento experimentará una deformación observable. Para los objetos más bien elásticos, dicha deformación se alcanza con aplicaciones de fuerza de baja magnitud, mientras que los materiales rígidos requieren de aplicación de magnitudes de fuerza de mayor consideración. La gráfica asociada al estudio de este fenómeno se conoce con el nombre de Curva Tensión Deformación de cuyo estudio es posible inferir el comportamiento del material. Un punto aparte en esta consideración lo representan los materiales viscoelásticos. Dichos materiales se caracterizan por presentar un comportamiento diferente en el tiempo a pesar de que las condiciones de carga o deformación a las que se les somete permanezcan constantes. Esto quiere decir, por ejemplo, que si el material es sometido a una carga constante, la deformación del material inicialmente ocurre a una cierta velocidad y que con el paso del tiempo de carga mantenida, dicha deformación tiende a ser constante (no experimentar variaciones). Un ejemplo clásico de material viscoelástico lo constituye el cartílago articular que cubre las superficies óseas.

Biomecánica computacional

La biomecánica computacional se refiere a la simulación mediante ordenadores de sistemas biomecánicos complejos. Usualmente se usan tanto modelos de sólidos para simular comportamientos cinemáticos, como modelos de elementos finitos para simular propiedades de deformación y resistencia de los tejidos y elementos biológicos. El tipo de análisis requerido en general es en régimen de grandes deformaciones, por lo que en general los modelos materiales usan relaciones no-lineales entre tensiones y deformaciones.

Los tejidos blandos presentan comportamientos viscoelásticos: gran capacidad disipación de energía, histéresis, relajación de tensiones, precondicionado y "creep". Por lo que generalmente las ecuaciones constitutivas adecuadas para modelarlos son de tipo viscoelástico e involucran tanto a tensiones y deformaciones, como a velocidades de deformación. Algunos tejidos blandos incluso pueden ser precondicionados sometiéndolos a cargas cíclicas, hasta el punto que las curvas de tensión-deformación para los tramos de carga y descarga puden llegar a prácticamente solaparse. El modelo más comunmente usado para modelar la viscoelasticidad de los tejidos blandos es la teoría de la viscoelasticidad cuasilineal (QLV).

Fotogrametría

Los estudios biomecánicos se sirven de distintas técnicas para lograr sus objetivos. Algunas de las más usuales son:

Tecnología biomecánica

La tecnología biomecánica se refiere tanto a dispositivos artificiales fabricados a partir de los resultados encontrados a partir de la investigación biomecánica, como a los instrumentos y técnicas usados en la investigación y adquisición de nuevos conocimientos en en el ámbito de la biomecánica.

Órganos artificiales

Son dispositivos y tejidos creados para sustituir partes dañadas del organismo. El análisis de un órgano artificial, debe considerarse en la construcción de estos aspectos tales como materiales que requieren unas particulares características para poder ser implantados e incorporados al organismo vivo. Además de las características físicas y químicas de resistencia mecánica, se necesita fiabilidad, duración y compatibilidad en un ambiente biológico que siempre tiene una elevada agresividad. “El mayor problema que se plantea la construcción de una prótesis se refiere a la relación entre el biomaterial y el tejido vital en el que se inserta ya que es muy importante el control de las reacciones químicas de superficie y microestructura, el tejido crece y tiende a incorporar incluso a nivel de los poros de la rugosidad superficial, el material implantado.

Prótesis

La sustitución de órganos por otros artificiales, constituye la frontera avanzada de la ingeniería biónica. Dejando aparte las prótesis ortopédicas cuyo empleo ha tenido un enorme desarrollo gracias a la aplicación de nuevos materiales y técnicas de cálculo, así como a los avances en las técnicas de implantación por lo que cada día es más amplia la gama de posibilidades de sustitución de órganos conocidos y menos conocido, lo cual resulta de gran ayuda para pacientes y médicos un ejemplo de esto es la fabricación de bombas de insulina para emplear en personas diabéticas.

  • Electromiografía: análisis de la actividad eléctrica de los músculos.
  • Plantillas instrumentadas: registro de las presiones ejercidas por el pie durante la marcha.
  • Baropodometro electronico: Pasillo instrumentado con sensores de presión que registran las presiones plantares durante diferentes gestos de locomoción (marcha, trote, carrera, etc.).
  • Plataformas de fuerza: plataformas dinamométricas diseñadas para registrar y analizar las fuerzas de acción-reacción y momentos realizados por una persona durante la realización de una actividad determinada.

Estudia las propiedades mecánicas, cinéticas y cinemáticas de los organismos, tomando en cuenta sus características morfo-funcionales.

Sensores

Para intervenir sobre cualquier órgano, se requiere el control y la medición continua de la intensidad del fenómeno. Los sensores que constituyen el primer elemento del sistema, son dispositivos que permiten detectar los fenómenos físicos y químicos, ofreciendo seriales de salida proporcionales a la intensidad de las entradas. Las señales de entrada de muy diversos tipos y convertidas en la mayoría de los casos en magnitudes eléctricas ( ejemplo, variaciones de presión y variaciones de resistencia eléctrica ) corresponden a variaciones de temperatura, de deformación muscular en los esfuerzos, de presión venosa o arterial, etc. Los sensores pueden ser electrodos directos capaces de captar las señales procedentes de actividades celulares, o pueden consistir en detectores de concentraciones de sustancias químicas.

Estimuladores

Los estimuladores artificiales son utilizados para activar ciertos órganos o funciones que, aun estando sanos no funcionan como es debido a causa de lesiones del sistema nervioso central; según Claude Ville: “Una función extremadamente delicada ,es la que se lleva a cabo para estimular el músculo cardiaco a través de un aparato marca pasos, que permite regular los latidos cardiacos al proporcionar desde el exterior impulsos de corriente y que resulta vital en algunos casos de arritmias cardiacas.” El marca pasos consta de una batería, un generador y un modulador de impulsos eléctricos y un electrodo que transmite los impulsos al tejido cardiaco. Existen muy diversos tipos de marca pasos (en la actualidad se cuenta con más de 200 tipos diferentes) Los impulsos eléctricos generados por el aparato pueden ser se frecuencia fija, es decir producidos a una frecuencia predeterminada, sin ninguna relación con la actividad del corazón, pero en la actualidad se emplean mas los marcapasos a demanda, o sea, mediante impulsos desencadenados cuando el propio aparato reconoce un fallo en el ritmo cardiaco normal.

Referencia

Bibliografía

Enlaces externos

Obtenido de "Biomec%C3%A1nica"

Wikimedia foundation. 2010.

Игры ⚽ Нужна курсовая?

Mira otros diccionarios:

  • biomecanică — BIOMECÁNICĂ s.f. Ştiinţă care studiază, pe baza mecanicii generale, structura, evoluţia şi funcţiile aparatului motor al animalelor şi al omului. [pr.: bi o ] – Din fr. biomécanique. Trimis de paula, 21.06.2002. Sursa: DEX 98  biomecánică s. f.… …   Dicționar Român

  • biomecánica — El estudio de las leyes mecánicas y su aplicación a los organismos vivos, especialmente al cuerpo humano y su sistema locomotor. Diccionario Mosby Medicina, Enfermería y Ciencias de la Salud, Ediciones Hancourt, S.A. 1999 …   Diccionario médico

  • biomecânica — s. f. Ciência que tem por objeto explicar, pela Física e pela Química, o maior número possível dos fenômenos vitais.   ‣ Etimologia: bio + mecânica …   Dicionário da Língua Portuguesa

  • biomecánica — {{#}}{{LM B05378}}{{〓}} {{[}}biomecánica{{]}} ‹bio·me·cá·ni·ca› {{《}}▍ s.f.{{》}} Parte de la biofísica que estudia las fuerzas y las aceleraciones que actúan sobre los organismos vivos: • La biomecánica ha permitido un gran desarrollo de las… …   Diccionario de uso del español actual con sinónimos y antónimos

  • biomecánica — ► sustantivo femenino BIOLOGÍA Disciplina que estudia los fenómenos vitales desde la perspectiva de la mecánica. * * * biomecánica f. Biol. Ciencia que estudia la estructura de los seres vivos aplicando las leyes de la mecánica …   Enciclopedia Universal

  • biomecánica dental — Campo de la biomecánica que se ocupa de los efectos biológicos de las sustituciones dentarias sobre las estructuras de la boca. Diccionario Mosby Medicina, Enfermería y Ciencias de la Salud, Ediciones Hancourt, S.A. 1999 …   Diccionario médico

  • biomecànica — bi|o|me|cà|ni|ca Mot Esdrúixol Nom femení …   Diccionari Català-Català

  • Instituto de Biomecánica de Valencia — Fachada del Instituto de Biomecánica de Valencia. El Instituto de Biomecánica de Valencia (IBV) es un centro tecnológico que persigue la mejora de los productos, entornos y servicios que utilizan las personas. La actividad del IBV está dirigida a …   Wikipedia Español

  • adaptación biomecánica — Proceso durante el tratamiento ortopédico cuyo objeto es conseguir que una persona incapacitada recupere la función normal de una parte de su cuerpo con ayuda de un dispositivo, como puede ser el de tobillo pie. El proceso de …   Diccionario médico

  • Hallux — Dedos gordos en la escultura …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”