Bioquímica

Bioquímica
Representación esquemática de la molécula de ADN, la molécula portadora de la información genética.

La Bioquímica es una ciencia que estudia la composición química de los seres vivos, especialmente las proteínas, carbohidratos, lípidos y ácidos nucleicos, además de otras pequeñas moléculas presentes en las células y las reacciones químicas que sufren estos compuestos (metabolismo) que les permiten obtener energía (catabolismo) y generar biomoléculas propias (anabolismo). La bioquímica se basa en el concepto de que todo ser vivo contiene carbono y en general las moléculas biológicas están compuestas principalmente de carbono, hidrógeno, oxígeno, nitrógeno, fósforo y azufre. Es la ciencia que estudia la base química de la vida: las moléculas que componen las células y los tejidos, que catalizan las reacciones químicas del metabolismo celular como la digestión, la fotosíntesis y la inmunidad, entre otras muchas cosas.

Podemos entender la bioquímica como una disciplina científica integradora que aborda el estudio de las biomoléculas y biosistemas. Integra de esta forma las leyes químico-físicas y la evolución biológica que afectan a los biosistemas y a sus componentes. Lo hace desde un punto de vista molecular y trata de entender y aplicar su conocimiento a amplios sectores de la Medicina (terapia génica y Biomedicina), la agroalimentación, la farmacología…

La Bioquímica constituye un pilar fundamental de la biotecnología, y se ha consolidado como una disciplina esencial para abordar los grandes problemas y enfermedades actuales y del futuro, tales como el cambio climático, la escasez de recursos agroalimentarios ante el aumento de población mundial, el agotamiento de las reservas de combustible fósil, la aparición de nuevas formas de alergias, el aumento de cáncer, las enfermedades genéticas, la obesidad…

La bioquímica es una ciencia experimental y por ello recurrirá al uso de numerosas técnicas instrumentales propias y de otros campos, pero la base de su desarrollo parte del hecho de que lo que ocurre in vivo a nivel subcelular se mantiene o conserva tras el fraccionamiento subcelular, y a partir de ahí, podemos estudiarlo y extraer conclusiones.

Contenido

Historia

La historia de la bioquímica moderna como tal es relativamente joven; desde el siglo XIX se comenzó a direccionar una buena parte de la biología y la química, a la creación de una nueva disciplina integradora: la química fisiológica o la bioquímica. Pero la aplicación de la bioquímica y su conocimiento, probablemente comenzó hace 5.000 años con la producción de pan usando levaduras en un proceso conocido como fermentación anaeróbica.

Es difícil abordar las historia de la bioquímica, en cuanto que, es una mezcla compleja de química orgánica y biología, y en ocasiones, se hace complicado discernir entre lo exclusivamente biológico y lo exclusivamente químico orgánico y es evidente que la contribución a esta disciplina ha sido muy extensa. Aunque, es cierto, que existen hitos experimentales que son básicos en la bioquímica.

Se suele situar el inicio de la bioquímica con los descubrimientos en 1828 de Friedrich Wöhler que publicó un artículo acerca de la síntesis de urea, probando que los compuestos orgánicos pueden ser creados artificialmente, en contraste con la creencia, comúnmente aceptada durante mucho tiempo, de que la generación de estos compuestos era posible sólo en el interior de los seres vivos.

En 1833, Anselme Payen aísla la primera enzima, la diastasa, aunque se desconocía su funcionalidad y el mecanismo subyacente.

En 1840, Justus von Liebig, mejoró las técnicas de análisis químico orgánico y concluyó que las plantas necesitaban nitrógeno y dióxido de carbono en su alimentación.

A mediados del siglo XIX, Louis Pasteur, demostró los fenómenos de isomería química existente entre las moléculas de ácido tartárico provenientes de los seres vivos y las sintetizadas químicamente en el laboratorio. También estudió el fenómeno de la fermentación y descubrió que intervenían ciertas levaduras, y por tanto no era exclusivamente un fenómeno químico como se había defendido hasta ahora (entre ellos el propio Liebig), así Pasteur escribió: "la fermentación del alcohol es un acto relacionado con la vida y la organización de las células de las levaduras, y no con la muerte y la putrefacción de las células" 1. Además desarrolló un método de esterilización de la leche, el vino y la cerveza (pasteurización) y contribuyó enormemente a refutar la idea de la generación espontánea de los seres vivos.

En 1878 el fisiólogo Wilhelm Kühne acuñó el término enzima para referirse a los componentes biológicos desconocidos que producían la fermentación. La palabra enzima fue usada después para referirse a sustancias inertes tales como la pepsina.

En 1869 se descubre la nucleína y se observa que es una sustancia muy rica en fósforo. Dos años más tarde, Albrecht Kossel concluye que la nucleína es rica en proteínas y contiene las bases púricas Adenina y Guanina y las pirimidínicas Citosina y Timina. En 1889 se aísla los dos componentes mayoritarios de la nucleína:

-Proteínas (70%) -Sustancia de carácter ácido: ácido nucleicos (30%)

En 1897 Eduard Buchner comenzó a estudiar la capacidad de los extractos de levadura para fermentar azúcar a pesar de la ausencia de células vivientes de levadura. En una serie de experimentos en la Universidad Humboldt de Berlín, encontró que el azúcar era fermentado inclusive cuando no había elementos vivos en los cultivos de células de levaduras 2. Llamó a la enzima que causa la fermentación de la sacarosa, “zimasa”. Al demostrar que las enzimas podrían funcionar fuera de una célula viva, el siguiente paso fue demostrar cual era la naturaleza bioquímica de esos biocatalizadores. El debate fue extenso, muchos como el bioquímico alemán Richard Willstätter discernían en que la proteína fuera el catalizador enzimático, hasta que en 1926, James B. Sumner demostró que la enzima ureasa era una proteína pura y la cristalizó. La conclusión de que las proteínas puras podían ser enzimas fue definitivamente probada en torno a 1930 por John Howard Northrop y Wendell Meredith Stanley, quienes trabajaron con diversas enzimas digestivas como la pepsina, la tripsina y la quimotripsina.

En 1903, Mijaíl Tswett, incia los estudios de cromatografía para separación de pigmentos.

En torno a 1915 Gustav Embden y Otto Meyerhof realizan sus estudios sobre la glucolisis.

En 1920 se descubre que en las células hay DNA y RNA y que difieren en el azúcar que forma parte de su composición: desoxirribosa o ribosa. El DNA reside en el núcleo. Unos años más tarde, se descubre que en los espermatozoides hay fundamentalmente DNA y proteínas, y posteriormente Feulgen descubre que hay ADN en los cromosomas con su tinción específica para este compuesto.

En 1925 Theodor Svedberg demuestra que las proteínas son macromoléculas y desarrolla la técnica de ultracentrifugación analítica.

En 1928, Alexander Fleming descubre la penicilina y desarrolla estudios sobre la lisozima.

Richard Willstätter (entorno 1910) estudia la clorofila y comprueba la similitud que hay con la hemoglobina. Posteriormente Hans Fischer en torno a 1930, investiga la química de las porfirinas de las que derivan la clorofila o el grupo porfirínco de la hemoglobina. Consiguió sintetizar hemina y bilirrubina. Paralelamente Heinrich Otto Wieland formula teorías sobre las deshidrogenaciones y explica la constitución de muchos otros productos de naturaleza compleja, como la pteridina, las hormonas sexuales o los ácidos biliares.

En la década de 1940, Melvin Calvin concluye el estudio del ciclo de Calvin en la fotosíntesis.

En torno a 1945 Gerty Cori, Carl Cori, y Bernardo Houssay completan sus estudios sobre el Ciclo de Cori.

En 1953 James Watson y Francis Crick, gracias a los estudios previos con cristalografía de rayos X de DNA de Rosalind Franklin y Maurice Wilkins, y los estudios de Erwin Chargaff sobre apareamiento de bases nitrogenadas, deducen la estructura de doble hélice del DNA. En 1957, Matthew Meselson y Franklin Stahl demuestran que la replicación del DNA es semiconservativa.

En la segunda mitad del siglo XX, comienza la auténtica revolución de la bioquímica y la biología molecular moderna especialmente gracias al desarrollo de las técnicas experimentales más básicas como la cromatografía, la centrifugación, la electroforesis, las técnicas radioisotópicas y la microscopía electrónica, y las más complejas técnicas como la cristalografía de rayos X, la resonancia magnética nuclear, la PCR (Kary Mullis), el desarrollo de la inmuno-técnicas…

Desde 1950 a 1975 , se conocen en profundidad y detalle aspectos del metabolismo celular inimaginables hasta ahora (fosforilación oxidativa (Peter Dennis Mitchell), ciclo de la urea y ciclo de Krebs (Hans Krebs), así como otras rutas metabólicas), se produce toda una revolución en el estudio de los genes y su expresión; se descifra el código genético (Francis Crick, Severo Ochoa, Har Gobind Khorana, Robert W. Holley y Marshall Warren Nirenberg), se descubren las enzimas de restricción (finales de 1960, Werner Arber, Daniel Nathans y Hamilton Smith), la DNA ligasa (en 1972, Mertz y Davis) y finalmente en 1973 Stanley Cohen y Herbert Boyer producen el primer ser vivo recombinante, nace así la ingeniería genética, convertida en una herramienta poderosísima con la que se supera la frontera entre especies y con la que podemos obtener un beneficio hasta ahora impensable…

De 1975 hasta principios del siglo XXI, comienza a secuenciarse el DNA (Allan Maxam, Walter Gilbert y Frederick Sanger), comienzan a crearse las primeras industrias biotecnológicas (Genentech), se aumenta la creación de fármacos y vacunas más eficaces, se eleva el interés por las inmunología y las células madres y se descubre la enzima telomerasa (Elizabeth Blackburn y Carol Greider). En 1989 se utiliza la biorremedicación a gran escala en el derrame del petrolero Exxon Valdez en Alaska. Se clonan los primeros seres vivos, se secuencia el DNA de decenas de especies y se publica el genoma completo del hombre (Craig Venter, Celera Genomics y Proyecto Genoma Humano), se resuelven decenas de miles de estructuras proteicas y se publican en PDB, así como genes, en GenBank. Comienza el desarrollo de la bioinformática y la computación de sistemas complejos, que se constituyen como herramientas muy poderosas en el estudio de los sistemas biológicos. Se crea el primer cromosoma artificial y se logra la primera bacteria con genoma sintético (2007, 2009, Craig Venter). Se fabrican las nucleasas de dedos de Zinc. Se inducen artificialmente células, que inicialmente no eran pluripotenciales, a células madre pluripotenciales (Shin'ya Yamanaka). Comienzan a darse los primeros pasos en terapia génica.

Ramas de la bioquímica

Esquema de una célula típica animal con sus orgánulos y estructuras.

El pilar fundamental de la investigación bioquímica se centra en las propiedades de las proteínas, muchas de las cuales son enzimas. Por razones históricas la bioquímica del metabolismo de la célula ha sido intensamente investigado, en importantes líneas de investigación actuales (como el Proyecto Genoma, cuya función es la de identificar y registrar todo el material genético humano), se dirigen hacia la investigación del ADN, el ARN, la síntesis de proteínas, la dinámica de la membrana celular y los ciclos energéticos.

Las ramas de la bioquímica son muy amplias y diversas, y han ido variando con el tiempo y los avances de la biología, la química y la física.

Biología celular: (citología) es una área de la biología que se dedica al estudio de la morfología y fisiología de las células procariotas y eucariotas. Trata de conocer los orgánulos celulares, su composición bioquímica y su función en el contexto celular tanto en estados fisiológicos como patológicos. Es esencial en esta área conocer los procesos intrínsecos a la vida celular durante el ciclo celular, como la nutrición, la respiración, la síntesis de componentes, los mecanismos de defensa, la división celular y la muerte celular. También se deben conocer los mecanismos de comunicación de células (especialmente en organismos pluricelulares) o las uniones intercelulares. Es un área esencialmente de observación y experimentación en cultivos celulares, que, frecuentemente, tienen como objetivo la identificación y separación de poblaciones celulares y el reconocimiento de orgánulos celulares. Algunas técnicas utilizadas en biología celular tienen que ver con siembra de cultivos celulares, observación por microscopía óptica y electrónica, inmunocitoquímcia, inmunohistoquímica, ELISA o citometría de flujo. Está íntimamente ligada a disciplinas como histología, microbiología o fisiología.

Química orgánica: es un área de la química que se encarga del estudio de los compuestos orgánicos, es decir, aquellos que tienen enlaces covalentes carbono-carbono o carbono-hidrógeno. Se trata de una ciencia íntimamente relacionada con la bioquímica, pues en la bioquímica la mayoría de compuestos biológicos participa el carbono. Así deben saber estructura, conocimientos sobre enlace químico, interacciones moleculares...

Genética molecular e ingeniería genética: es un área de la bioquímica y la biología molecular que estudia los genes, su herencia y su expresión. Molecularmente, se dedica al estudio del DNA y del RNA principalmente, y utiliza herramientas y técnicas potentes en su estudio, tales como la PCR y sus variantes, los secuenciadores masivos, los kits comerciales de extracción de DNA y RNA, procesos de transcripción-traducción in vitro e in vivo, enzimas de restricción, DNA ligasas… Es esencial conocer como el DNA se replica, se transcribe y se traduce a proteínas (Dogma Central de la Biología Molecular), así como los mecanismos de expresión basal e inducible de genes en el genoma. También estudia la inserción de genes, el silenciamiento génico y la expresión diferencial de genes y sus efectos. Superando así las barreras y fronteras entre especies en el sentido que el genoma de una especie podemos insertarlo en otro y generar nuevas especies. Uno de sus máximos objetivos actuales es conocer los mecanismos de regulación y expresión genética, es decir, obtener un código epigenético. Constituye un pilar esencial en todas las disciplinas biocientíficas, especialmente en biotecnología.

Inmunología: área de la biología, la cual se interesa por la reacción del organismo frente a otros organismos como las bacterias y virus. Todo esto tomando en cuenta la reacción y funcionamiento del sistema inmune de los seres vivos. Es esencial en esta área el desarrollo de los estudios de producción y comportamiento de los anticuerpos.

Virología: área de la biología, que se dedica al estudio de los biosistemas más elementales: los virus. Tanto en su clasificación y reconocimiento, como en su funcionamiento y estructura molecular. Pretende reconocer dianas para la actuación de posibles de fármacos y vacunas que eviten su directa o preventivamente su expansión. También se analizan y predicen, en términos evolutivos, la variación y la combinación de los genomas víricos, que podrían hacerlos eventualmente, más peligrosos. Finalmente suponen una herramienta con mucha proyección como vectores recombinantes, y han sido ya utilizados en terapia génica.

Farmacología: área de la bioquímica que estudia cómo afectan o benefician ciertas sustancias químicas al funcionamiento celular en el organismo. Se pretende generar racionalmente sustancias menos invasivas y más eficaces contra dianas biomoleculares concretas. En bioquímica es esencial una de sus rama, la enzimología que estudia el comportamiento bioquímico de las enzimas (proteínas) que son biocatalizadores. En este sentido, pretende conocer el comportamiento cinético químico de ciertas reacciones metabólicas, los mecanismos de catálisis y los procesos de actuación de las enzimas, así como su modificación.

Enzimología: área de la bioquímica muy ligada a la farmacología. Estudia el comportamiento de los catalizadores biológicos o enzimas, como son algunas proteínas y ciertos RNA catalíticos. Así se cuestiona los mecanismos de catálisis, los procesos de interacción de las enzimas-sustraro, los estados de transición catalíticos, las actividades enzimáticas, la cinética de la reacción,... todo ello desde un punto de vista bioquímico. Estudia y trata de comprender los elementos esenciales del centro activo y de aquellos que no participan, así como los efectos catalíticos que ocurren en la modificación de dichos elementos; en este sentido, utilizan frecuentemente técnicas como la mutagénesis dirigidas.

Estructura de macromoléculas o bioquímica estructural: es un área de la bioquímica que pretende comprender la arquitectura química de las moléculas biológicas especialmente de las proteínas y de los ácidos nucleicos (DNA y RNA). Así intentan conocer por qué las macromoléculas son así, que interacciones físico-químicas atómicas posibilitan dichas estructuras, como se pliegan las proteínas… Uno de sus máximos retos es determinar la estructura de una proteína conociendo sólo la secuencia de aminoácidos, que supondría la base esencial para el diseño racional de proteínas (ingeniería de proteínas).

Metabolismo y su regulación: es un área de la bioquímica que pretende conocer los diferentes tipos de rutas metabólicas a nivel celular, y su contexto orgánico. De esta forma son esenciales conocimientos de enzimología y biología celular. Estudia todas las reacciones bioquímicas celulares que posibilitan la vida, y así como los índices bioquímicos orgánicos saludables, las bases moleculares de las enfermedades metabólicas o los flujos de intermediarios metabólicos a nivel global.

Técnicas bioquímicas básicas

Al ser una ciencia experimental la bioquímica requiere de numerosas técnicas instrumentales que posibilitan su desarrollo y ampliación, algunas de ellas se usan diariamente en cualquier laboratorio y otras son muy exclusivas.

Expectativas y retos de la bioquímica

La bioquímica es una ciencia experimental que tiene un presente y un futuro prometedor, en el sentido, que se yergue como base de la biotecnología y la biomedicina.

La bioquímica es básica para la formación de organismos y alimentos transgénicos, la biorremediación o la terapia génica, y se constituye como faro y esperanza de los grandes retos que plantea el siglo XXI. No cabe duda de que los cambios que traerá, beneficiarán enormemente a la humanidad, pero el hecho intrínseco de ser un conocimiento tan poderoso lo puede hacer peligroso, en este sentido es importante áreas como la bioética que regulan la moralidad y guían el conocimiento biológico hacia el beneficio humano sin transgresiones morales.

El conocimiento bioquímico tiene grandes objetivos como progresar en la terapia génica, por ejemplo contra el cáncer o el VIH, desarrollar alimentos transgénicos más eficientes, resistentes, seguros y saludables, aplicar los conocimientos bioquímicos a la lucha contra el cambio climático y la extinción de especies, generar nuevos fármacos más eficientes, investigar y buscar dianas de las enfermedades, conocer los patrones de expresión génico, generar nuevos materiales, mejorar la eficiencia de la producción industrial…

Importantes bioquímicos españoles

Véase también

Enlaces externos

Comunidades bioquímicas

  • BioROM - Autores de materiales de ayuda para el aprendizaje de bioquímica, biotecnología y biología molecular.
  • SEBBM - Sociedad Española de Bioquímica y Biología Molecular.
  • ANEB - Asociación Nacional de Estudiantes de Bioquímica de Chile.

Wikimedia foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Mira otros diccionarios:

  • bioquímica — f. biol. Rama de la biología y de la química que trata sobre los mecanismos biológicos desde el punto de vista químico; analiza las reacciones químicas que se llevan a cabo en el organismo, la naturaleza de las sustancias que componen la materia… …   Diccionario médico

  • bioquímica — s. f. Parte da Biologia que estuda a constituição química das substâncias produzidas pela ação da vida.   ‣ Etimologia: bio + química …   Dicionário da Língua Portuguesa

  • bioquímica — sustantivo femenino 1. (no contable) Parte de la química que estudia la composición y las reacciones químicas de los seres vivos …   Diccionario Salamanca de la Lengua Española

  • bioquímica — (Del fr. biochimie, y este der. de bio y chimie, química). f. Estudio químico de la estructura y de las funciones de los seres vivos …   Diccionario de la lengua española

  • Bioquímica — ► sustantivo femenino BIOLOGÍA, QUÍMICA Disciplina que estudia la composición y transformaciones químicas en los procesos biológicos. * * * bioquímica f. Ciencia que estudia la composición y fenómenos químicos de los seres vivos. * * * bioquímica …   Enciclopedia Universal

  • bioquímica — {{#}}{{LM B45558}}{{〓}} {{[}}bioquímica{{]}} ‹bio·quí·mi·ca› {{《}}▍ s.f.{{》}} Véase {{B05386}}{{上}}bioquímico, bioquímica{{下}} …   Diccionario de uso del español actual con sinónimos y antónimos

  • Bioquímica clínica — Saltar a navegación, búsqueda La Bioquímica clínica es la ciencia que estudia la biología y la química humanas, con una orientación médica y aplicada; sus investigaciones y conclusiones pueden ser aplicadas y reutilizadas en la medicina… …   Wikipedia Español

  • bioquímica — bi|o|quí|mi|ca Mot Esdrúixol Nom femení …   Diccionari Català-Català

  • bioquímica — sustantivo femenino química biológica …   Diccionario de sinónimos y antónimos

  • bioquímica — f. Parte de la química que estudia la composición y las transformaciones químicas de los seres vivos …   Diccionario Castellano

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”