Factorización de matrices

Factorización de matrices

Factorización de matrices

En álgebra lineal la factorización de una matriz es la descomposición de la misma como producto de dos o más matrices según una forma canónica.

Según las aplicaciones de la factorización podemos distinguir los siguientes tipos de factorizaciones:

Contenido

Resolución de sistemas de ecuaciones lineales

Las siguientes factorizaciones se utilizan en la resolución de sistemas de ecuaciones lineales, cálculo de determinantes e inversión de matrices.

Factorización LU

  • Aplicable a: una matriz cuadrada A
  • Factorización: A = LU, donde L es una matriz triangular inferior y U es una matriz triangular superior
  • Notas: La factorización LU expresa el método de Gauss en forma matricial. En efecto, PA = LU donde P es una matriz de permutación. Los elementos de la diagonal principal de U son todos iguales a 1. Una condición suficiente de que exista la factorización es que la matriz A sea invertible.
  • Resolución del sistema de ecuaciones lineales Ax = b: primero se resuelve el sistema de ecuaciones Ly = b y después Ux = y.
  • Existencia: Una condición necesaria y suficiente es que todos los menores principales de A sean distintos de cero[1] .
  • Métodos de cálculo: método de Crout que obtiene una matriz U cuyos elementos de la diagonal son todos 1. El método de Doolittle es una modificación del mismo.

Factorización LDLT

  • Aplicable a: una matriz cuadrada simétrica A.
  • Factorización: A = LDLT donde L es una matriz triangular inferior con unos en la diagonal y LT denota su matriz traspuesta. La factorización es única.
  • Existencia: Una condición suficiente es que todos los menores principales de A sean distintos de cero.
  • Notas: Si la matriz es definida positiva la factorización existe y es única siendo los elementos de la diagonal positivos.

Factorización de Cholesky

  • Aplicable a: una matriz cuadrada simétrica definida positiva A
  • Factorización: A = LLT, donde L es una matriz triangular inferior con entradas en la diagonal positivas.
  • Notas: La factorización siempre existe y es única.

Factorización QR o triangularización ortogonal

  • Aplicable a: una matriz A m por n.
  • Factorización: A = QR donde Q es una matriz ortogonal m por m, y R es una matriz triangular superior m por n.
  • Métodos de cálculo: La factorización QR puede calcularse mediante el proceso de ortogonalización de Gram-Schmidt aplicado a las columnas de A, mediante el uso de transformaciones de Householder y mediante transformaciones de Givens.
  • Notas: La factorización QR puede utilizarse para "resolver" el sistema de ecuaciones lineales Ax = b cuando el número de ecuaciones es distinto al de incógnitas.

Descomposición en valores singulares

  • Aplicable a: una matriz A m-por-n.
  • Factorización: A = UΣVT, donde Σ es una matriz diagonal mxn, y U y V son matrices ortogonales mxm y nxn respectivamente, siendo VT la traspuesta de V. Los elementos de la diagonal de Σ son los valores singulares de A y son mayores o iguales a cero.
  • Notas: a la matriz VΣ + UT, donde Σ + es igual a la matriz Σ reemplazando los valores singulares por sus recíprocos, se le llama pseudoinversa de A.

Otros tipos de factorizaciones

Diagonalización de una matriz

  • Aplicable a: una matriz cuadrada A
  • Factorización:
  • Existencia:

Forma canónica de Jordan

  • Aplicable a: una matriz cuadrada A
  • Factorización:

Factorización de Schur

  • Aplicable a: una matriz cuadrada A
  • Factorización:

Tridiagonalización

  • Aplicable a: una matriz cuadrada simétrica A
  • Factorización:

Referencias

Bibliografía

Obtenido de "Factorizaci%C3%B3n de matrices"

Wikimedia foundation. 2010.

Игры ⚽ Поможем написать курсовую

Mira otros diccionarios:

  • Factorización LU — Saltar a navegación, búsqueda En el álgebra lineal, la factorización o descomposición LU es una forma de factorización de una matriz como el producto de una matriz triangular inferior y una superior. Debido a la inestabilidad de éste método, por… …   Wikipedia Español

  • Factorización de Cholesky — Saltar a navegación, búsqueda En matemáticas, la factorización o descomposición de Cholesky toma su nombre del matemático André Louis Cholesky, quien encontró que una matriz simétrica definida positiva puede ser descompuesta como el producto de… …   Wikipedia Español

  • Factorización QR — Saltar a navegación, búsqueda En álgebra lineal, la descomposición o factorización QR de una matriz es una descomposición de la misma como producto de una matriz ortogonal por una triangular superior. La descomposición QR es la base del algoritmo …   Wikipedia Español

  • Factorización de Schur — Saltar a navegación, búsqueda En álgebra lineal, la descomposición de Schur o triangulación de Schur es una importante descomposición matricial. Definición Si A es una matriz cuadrada sobre números complejos, entonces A puede descomponerse como… …   Wikipedia Español

  • Factorización de rango — Saltar a navegación, búsqueda Dada una matriz A, de dimensiones y de rango r, una descomposición de rango de A es un producto A = CF, donde C es una matriz y F es una matriz …   Wikipedia Español

  • Teoría de Matrices — Saltar a navegación, búsqueda La teoría de matrices es un rama de las matemáticas que se centra en el estudio de matrices. Inicialmente una rama secundaria del álgebra lineal, ha venido cubriendo los temas relacionados con la teoría de grafos, el …   Wikipedia Español

  • Teoría de matrices — Se ha sugerido que este artículo o sección sea fusionado en matriz (matemática) (discusión). Una vez que hayas realizado la fusión de artículos, pide la fusión de historiales aquí. La teoría de matrices es un rama de las matemáticas que se centra …   Wikipedia Español

  • Complejidad y criptografía — La criptografía es la ciencia encargada del estudio y diseño de sistemas que permiten ocultar información. Desde sus inicios, esta capacidad de encubrimiento se ha basado en la dificultad que supondría a una entidad no autorizada el obtener la… …   Wikipedia Español

  • Vector propio y valor propio — Fig. 1. En esta transformación de la Mona Lisa, la imagen se ha deformado de tal forma que su eje vertical no ha cambiado. (nota: se han recortado las esquinas en la imagen de la derecha) …   Wikipedia Español

  • Álgebra lineal numérica — El Álgebra lineal numérica es el estudio de algoritmos para realizar cálculos de álgebra lineal, en particular las operaciones con matrices, en las computadoras. A menudo es una parte fundamental de la ingeniería y los problemas de ciencias de la …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”