Teorema fundamental del cálculo integral

Teorema fundamental del cálculo integral

Teorema fundamental del cálculo integral

El teorema fundamental del cálculo integral consiste (intuitivamente) en la afirmación de que la derivación e integración de una función son operaciones inversas. Esto significa que toda función continua integrable verifica que la derivada de su integral es igual a ella misma. Este teorema es central en la rama de las matemáticas denominado análisis matemático o cálculo.

Una consecuencia directa de este teorema es la regla de Barrow, denominada en ocasiones segundo teorema fundamental del cálculo, y que permite calcular la integral de una función utilizando la antiderivada de la función al ser integrada.

Aunque los antiguos matemáticos griegos como Arquímedes ya contaban con métodos aproximados para el cálculo de volúmenes, áreas y longitudes curvas, fue gracias a una idea originalmente desarrollada por el matemático inglés Isaac Barrow y los aportes de Isaac Newton y Gottfried Leibniz que este teorema pudo ser enunciado y demostrado.

Contenido

Intuición geométrica

El área rayada en rojo puede ser calculada como h × f(x), o si se conociera la función A(X), como A(x+h) − A(x). Estos valores son aproximadamente iguales para valores pequeños de h.

Supóngase que se tiene una función continua y = f(x) y que su representación gráfica es una curva. Entonces, para cada valor de x tiene sentido de manera intuitiva pensar que existe una función A(x) que representa el área bajo la curva entre 0 y x aún sin conocer su expresión.

Supóngase ahora que se quiere calcular el área bajo la curva entre x y x+h. Se podría hacer hallando el área entre 0 y x+h y luego restando el área entre 0 y x. En resumen, el área de esta especie de "loncha" sería A(x+h) − A(x).

Otra manera de estimar esta misma área es multiplicar h por f(x) para hallar el área de un rectángulo que coincide aproximadamente con la "loncha". Nótese que la aproximación al área buscada es más precisa cuanto más pequeño sea el valor de h.

Por lo tanto, se puede decir que A(x+h) − A(x) es aproximadamente igual a f(x) · h, y que la precisión de esta aproximación mejora al disminuir el valor de h. En otras palabras, ƒ(xhA(x+h) − A(x), convirtiéndose esta aproximación en igualdad cuando h tiende a 0 como límite.

Dividiendo los dos lados de la ecuación por h se obtiene

f(x) \approx \frac{A(x+h)-A(x)}{h}.

Cuando h tiende a 0, se observa que el miembro derecho de la ecuación es sencillamente la derivada A’(x) de la función A(x) y que el miembro izquierdo se queda en ƒ(x) al ya no estar h presente.

Se muestra entonces de manera informal que ƒ(x) = A’(x), es decir, que la derivada de la función de área A(x) es en realidad la función ƒ(x). Dicho de otra forma, la función de área A(x) es la antiderivada de la función original.

Lo que se ha mostrado es que, intuitivamente, calcular la derivada de una función y "hallar el área" bajo su curva son operaciones "inversas", es decir el objetivo del teorema fundamental del cálculo integral.

Primer teorema fundamental del cálculo

Dada una función f integrable sobre el intervalo [a,b], definimos F sobre [a,b] por F(x) = {\int_{a}^x f(t)dt}. Si f es continua en c \in (a,b), entonces F es derivable en c y F'(c) = f(c).

Demostración

Lema

Sea f integrable sobre [a,b] y

m \leq f(x) \leq M \forall  x \in [a,b]

Entonces

m(b-a) \leq {\int_a^b f(t)dt} \leq M(b-a)

Demostración

Por definición se tiene que F'(c)={ \lim_{h \rightarrow 0} {\frac{F(c+h)-F(c)}{h}} }.

Sea h>0. Entonces F(c+h)-F(c)={\int_c^{c+h} f(t)dt}.

Se define mh y Mh como:

m_h = \inf\{f(x)| c\leq x \leq c+h\},
M_h = \sup\{f(x)| c\leq x \leq c+h\}

Aplicando el 'lema' se observa que

m_h \cdot h \leq {\int_c^{c+h} f(t)dt} \leq M_h \cdot h.

Por lo tanto,

m_h \leq \frac{F(c+h)-F(c)}{h} \leq M_h

Sea h < 0. Sean

{m^*}_h = \inf \{ f(x)|c+h \leq x \leq c \},
{M^*}_h = \sup \{ f(x)|c+h \leq x \leq c \}.

Aplicando el 'lema' se observa que

{m^*}_h \cdot (-h) \leq {\int_{c+h}^c f(t)dt } \leq {M^*}_h \cdot (-h) .

Como

F(c+h)-F(c)={\int_c^{c+h} f(t)dt} = -{\int_{c+h}^{c} f(t)dt},

entonces

{m^*}_h \cdot h \geq F(c+h)-F(c) \geq {M^*}_h \cdot h.

Puesto que h < 0, se tiene que

{m^*}_h \leq \frac{F(c+h)-F(c)}{h} \leq {M^*}_h.

Y como f es continua en c se tiene que

\lim_{h \rightarrow 0} m_h = \lim_{h \rightarrow 0} M_h = \lim_{h \rightarrow 0} {m^*}_h = \lim_{h \rightarrow 0} {M^*}_h = f(c),

y esto lleva a que

F'(c)={ \lim_{h \rightarrow 0} {\frac{F(c+h)-F(c)}{h}} } = f(c).

Ejemplos

F(x) = \int_{0}^{x} t^2 dt \Rightarrow F'(x) = x^2
H(x) = \int_{10}^{e^{3x}} sen(t) dt \rightarrow H'(x) = sen(e^{3x}) e^{3x} 3
G(x) = \int_{0}^{x^2} arcsen(t) dt \rightarrow G'(x) = arcsen(x^2) 2x
J(x) = \int_{a}^{\int_{a}^{x} \frac{1}{(1+sen^2t)}} \frac{1}{(1+sen^2t)} dt \rightarrow J'(x)= \frac{1}{(1+sen^2\int_{a}^{x} \frac{1}{(1+sen^2t)\frac{1}{(1+sen^2x)}})}

Segundo teorema fundamental del cálculo

También se le llama regla de Barrow, en honor a Isaac Barrow o regla de Newton - Leibniz.

Dada una función f continua en el intervalo [a,b] y sea g cualquier función primitiva de f, es decir g'(x)=f(x) para todo x \in [a,b], entonces:

\int_{a}^{b} f(x) dx = g(b) - g(a)

Este teorema se usa frecuentemente para evaluar integrales definidas.

Demostración

Sea

F(x)= \int_a^x f(t)dt .

Tenemos por el primer teorema fundamental del cálculo que:

F'(x)=f(x)=g'(x) {\   } \forall x \in [a,b].

Por lo tanto,

\exists c \in \mathbb{R} {\  } tal que \forall x \in [a,b], F(x)=g(x) + c.

Observamos que

0 = F(a) = g(a) + c

y de eso se sigue que c = − g(a); por lo tanto,

F(x) = g(x) − g(a).

Y en particular si x = b tenemos que:

\int_a^b f(t)dt = F(b) = g(b) - Max(a)

Ejemplos

\int_0^{\pi} \cos(x)dx = \sin(\pi)-\sin(0)=0

\int_1^e \frac{dx}{x} = \ln(e)-\ln(1)=1

como se puede integrar inmediatamente

Véase también

Enlaces externos

Obtenido de "Teorema fundamental del c%C3%A1lculo integral"

Wikimedia foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Mira otros diccionarios:

  • Teorema fundamental del cálculo integral — El teorema fundamental del cálculo integral consiste en la afirmación de que la derivación e integración de una función son operaciones inversas. Esto significa que toda función continua integrable verifica que la derivada de su integral es igual …   Enciclopedia Universal

  • Teorema fundamental del cálculo — El teorema fundamental del cálculo consiste (intuitivamente) en la afirmación de que la derivación e integración de una función son operaciones inversas. Esto significa que toda función continua integrable verifica que la derivada de su integral… …   Wikipedia Español

  • Cálculo integral — Saltar a navegación, búsqueda El cálculo integral, encuadrado en el cálculo infinitesimal, es una rama de las matemáticas en la cual se estudia el cálculo a partir del proceso de integración o antiderivación, es muy común en la ingeniería y en la …   Wikipedia Español

  • cálculo, teorema fundamental del — Principio básico del cálculo. Relaciona la derivada con la integral y proporciona el principal método para evaluar integrales definidas (ver cálculo diferencial; cálculo integral). En breve, dice que cualquier función continua (ver continuidad)… …   Enciclopedia Universal

  • cálculo integral — Rama del cálculo que se ocupa de la teoría y aplicaciones de las integrales. Mientras el cálculo diferencial se centra en tasas de cambio, como pendientes de rectas tangentes y velocidades, el cálculo integral trata de tamaños o valores totales,… …   Enciclopedia Universal

  • Cálculo infinitesimal — Saltar a navegación, búsqueda El cálculo infinitesimal o cálculo de infinitesimales constituye una parte muy importante de la matemática moderna. Es normal en el contexto matemático, por simplificación, simplemente llamarlo cálculo. El cálculo,… …   Wikipedia Español

  • Teorema del valor medio — En cálculo diferencial, el teorema de valor medio (de Lagrange), también llamado teorema de los incrementos finitos, teorema de Bonnet Lagrange o teoría del punto medio es una propiedad de las funciones derivables en un intervalo. Algunos… …   Wikipedia Español

  • Teorema de Taylor — La función exponencial y = ex (línea roja continua) y su aproximación mediante un polinomio de Taylor alrededor del origen de (línea verde discontinua). En cálculo, el teorema de Taylor, recibe su nombre del matemático británico Brook Taylor,… …   Wikipedia Español

  • Cálculo — Saltar a navegación, búsqueda Para otros usos de este término, véase Cálculo (desambiguación). Para cálculo infinitesimal (diferencial o integral) véase Cálculo infinitesimal Para el estudio de los números reales, los complejos, los vectores y… …   Wikipedia Español

  • Cálculo — (Del lat. calculus, guijarro, piedras usadas para enseñar a contar.) ► sustantivo masculino 1 MATEMÁTICAS Cómputo, cuenta que se hace por medio de operaciones matemáticas: ■ cálculo aritmético. 2 Acción de pensar por anticipado los resultados… …   Enciclopedia Universal

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”