Nilpotente

Nilpotente

En matemática, un elemento x de un anillo R se dice que es nilpotente si existe algún entero positivo n tal que xn = 0.

Contenido

Ejemplos

A = \begin{pmatrix}
0&1&0\\
0&0&1\\
0&0&0\end{pmatrix}
es nilpotente porque A³ = 0. Ver matriz nilpotente para mayor detalle.
  • En el anillo factorial Z/9Z, la clase del 3 es nilpotente porque 3² es congruente con 0 módulo 9.
  • Suponemos que dos elementos a, b de un anillo no conmutativo R satisfacen ab=0. Entonces, el elemento c=ba es nilpotente (si es no nulo) ya que c²=(ba)²=b(ab) a=0. Un ejemplo con matrices sería:
A_1 = \begin{pmatrix}
0&1\\
0&1
\end{pmatrix}, \;\;
A_2 =\begin{pmatrix}
0&1\\
0&0
\end{pmatrix} \ .
Vemos que  A_1A_2=0,\; A_2A_1=A_2 .

Propiedades

Ningún elemento nilpotente puede ser una unidad (excepto en el anillo trivial {0} en el que únicamente existe un único elemento 0 = 1). Todos los elementos nilpotentes son divisores de cero.

Una matriz cuadrada n dimensional A con elementos en un cuerpo es nilpotente si y solo si su polinomio característico es Tn, lo cual sucede si y solo si An = 0.

Los elementos nilpotentes de un anillo conmutativo forman un ideal; este hecho es consecuencia del teorema del binomio. Este ideal es el nilradical del anillo. Cada elemento nilpotente de un anillo conmutativo está contenido en todo ideal primo del anillo, y de hecho la intersección de todos los anillos primos es el nilradical.

Si x es nilpotente, entonces 1 − x es una unidad, porque xn = 0 implica

(1 − x) (1 + x + x² + ... + xn−1) = 1 − xn = 1.

Nilpotencia en física

Un operador Q que satisface Q2 = 0 es nilpotente. El BRST charge es un ejemplo muy importante en física.

Como que los operadores lineales forman una álgebra asociativa y por tanto un anillo, éste es un caso especial de la definición inicial. En general, desde el punto de vista de la definición anterior, un operador Q es nilpotente si existe nN tal que Qn=o (la función cero). En consiguiente, una aplicación lineal es nilpotente si y solo si está definida por una matriz nilpotente en alguna base. Otro ejemplo es la derivada exterior (otra vez con n=2). Ambas están relacionadas, a través de la supersimetría y la teoría de Morse, como fue demostrado por Edward Witten.

El campo electromagnético de una onda plana sin fuentes es nilpotente cuando se expresa en el lenguaje de la álgebra del espacio físico.

Referencias

  • E Witten, Supersymmetry and Morse theory. J.Diff.Geom.17:661-692,1982.
  • A. Rogers, The topological particle and Morse theory, Class. Quantum Grav. 17:3703-3714,2000.

Wikimedia foundation. 2010.

Игры ⚽ Поможем сделать НИР

Mira otros diccionarios:

  • nilpotente — ● nilpotent, nilpotente adjectif Élément nilpotent d un anneau A, élément a de A tel qu il existe un entier naturel non nul n pour lequel an = 0. ● nilpotent, nilpotente (expressions) adjectif Élément nilpotent d un anneau A, élément a de A tel… …   Encyclopédie Universelle

  • Nilpotente Gruppe — ist ein Begriff aus dem Bereich der Gruppentheorie, einem Teilgebiet der Mathematik. In gewissem Sinn verallgemeinert er für endliche Gruppen den Begriff der kommutativen Gruppe „so wenig wie möglich“: Jede kommutative Gruppe ist nilpotent, aber… …   Deutsch Wikipedia

  • Nilpotente Matrix — Die nilpotente Matrix und der nilpotente Endomorphismus sind Begriffe aus dem mathematischen Teilgebiet der linearen Algebra. Dabei bezeichnet man eine quadratische Matrix als nilpotent, wenn eine ihrer Potenzen die Nullmatrix ergibt: An = 0 für… …   Deutsch Wikipedia

  • Nilpotente Matrizen — Die nilpotente Matrix und der nilpotente Endomorphismus sind Begriffe aus dem mathematischen Teilgebiet der linearen Algebra. Dabei bezeichnet man eine quadratische Matrix als nilpotent, wenn eine ihrer Potenzen die Nullmatrix ergibt: An = 0 für… …   Deutsch Wikipedia

  • Nilpotente Lie-Algebra — Lie Algebra berührt die Spezialgebiete Mathematik Lineare Algebra Lie Gruppen Physik Eichtheorie ist Spezialfall von Vektorraum …   Deutsch Wikipedia

  • Matrice Nilpotente — Une matrice nilpotente est une matrice dont il existe une puissance égale à la matrice nulle. Elle correspond à la notion d endomorphisme nilpotent. Cette notion joue un rôle important dans le monde des matrices. En effet, pour un maniement plus… …   Wikipédia en Français

  • Grupo nilpotente — En la teoría de grupos, un grupo nilpotente es un grupo que es casi abeliano. En forma más precisa, aplicando repetidamente la operación commutación, [x,y] = x 1y 1xy a cualesquiera elementos del grupo obtenemos la identidad. Los grupos… …   Wikipedia Español

  • Matrice nilpotente — Une matrice nilpotente est une matrice dont il existe une puissance égale à la matrice nulle. Elle correspond à la notion d endomorphisme nilpotent sur un espace vectoriel de dimension finie. Cette notion facilite souvent le calcul matriciel. En… …   Wikipédia en Français

  • Matriz nilpotente — En álgebra lineal, una matriz se dice que es nilpotente si existe tal que . Contenido 1 Teorema 1.1 Demostración …   Wikipedia Español

  • Matriz nilpotente — Una matriz se dice nilpotente si existe tal que . Si A es una matriz nilpotente entonces |A|=0 …   Enciclopedia Universal

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”