Estación Espacial Internacional

Estación Espacial Internacional
«ISS» redirige aquí. Para otras acepciones, véase ISS (desambiguación).
Estación Espacial Internacional
STS-134 International Space Station after undocking.jpg

La Estación Espacial Internacional vista desde el Transbordador Espacial Endeavour que fue fotografiada durante la STS-134 el 30 de mayo de 2011.

Países participantes

ISS insignia.svg

Insignia de la Estación Espacial Internacional.

Estadísticas
Tripulación: 6
1-Mar-2009
Perigeo: 339,3 km "
Apogeo: 341,8 km "
Período orbital: 91,34 minutos "
Inclinación: 51,64 grados "
Órbitas por día: 15,76 "
Desvío medio diario
en altitud
:
~88 m "
Días en órbita: 4.100
10-Feb-2010
Días ocupada: 2.649 "
Órbitas totales: 52.953
1-Feb-2008
Distancia recorrida: ~2.000 millones de km
1-Feb-2008
Velocidad media: 7,7 km/s 27.743 km/h
Masa actual: 232.693 kg
1-Feb-2008
Peso del combustible: ~ 3.951 kg "
Volumen del área habitable (actual): 373 m³ "
Presión: ~ 757 mmHg (100 kPa)[1] .
Temperatura: ~ 27 °C .
Diagrama ISS

Componentes de la ISS (NASA).
Componentes de la Estación Espacial Internacional en marzo de 2009
(cliquee para ver la imagen aumentada).

La Estación Espacial Internacional (EEI) (en inglés, International Space Station o ISS), también conocida como la Estación Orbital Internacional es un centro de investigación construido en la órbita terrestre. En el proyecto participan cinco agencias del espacio: la NASA, la Agencia Espacial Federal Rusa, la Agencia Japonesa de Exploración Espacial, la Agencia Espacial Canadiense y la Agencia Espacial Europea (ESA).[2] Está considerada como uno de los logros más grandes de la ingeniería.

La Agencia Espacial Brasileña participa a través de un contrato separado con la NASA. La Agencia Espacial Italiana tiene semejantemente contratos separados para las varias actividades no hechas en el marco de los trabajos de la ESA en la ISS (donde participa Italia también completamente).

La estación espacial está situada en órbita alrededor de la Tierra, a una altitud de aproximadamente 360 kilómetros, un tipo de órbita terrestre baja. La altura real varía en un cierto plazo por varios kilómetros debido a la fricción atmosférica y a las repetidas propulsiones. Realiza una órbita alrededor de la Tierra en un período de cerca de 92 minutos; antes de junio de 2005 había terminado más de 37.500 órbitas desde el lanzamiento del módulo Zarya el 20 de noviembre de 1998.

De muchas maneras la ISS representa una fusión de las estaciones espaciales previamente previstas: la Mir-2 de Rusia, la estación espacial estadounidense Freedom, el previsto módulo europeo Columbus y el JEM (Módulo Japonés de Experimentos).

Gracias a la ISS, hay presencia humana permanente en el espacio, pues ha habido siempre por lo menos dos personas a bordo de la ISS desde que el primer equipo permanente entrara en ella el 2 de noviembre de 2000. La estación es mantenida sobre todo hoy día por las lanzaderas rusas Soyuz y la nave espacial Progress; y en anteriores ocasiones gracias a los Space Shuttle norteamericanos, hasta el año 2011, ya que el programa de transbordadores espaciales de Estados Unidos ha sido cancelado ante sus exhorbitantes costos para ayudar al recorte de gastos del gobierno estadounidense. La ISS está, al mes de agosto de 2011 totalmente concluida, siendo sus últimos trabajos de construcción adelantados en el año 2010. En sus primeros tiempos, la estación tenía una capacidad para una tripulación de tres astronautas, pero desde la llegada de la Expedición 20, estuvo lista para soportar una tripulación de seis astronautas. Antes de que llegara el astronauta alemán Thomas Reiter, de la ESA; que se une al equipo de la Expedición 13 en julio de 2006, todos los astronautas permanentes pertenecían a los programas espaciales ruso, estadounidense o canadiense. La ISS, sin embargo, ha sido visitada por astronautas de dieciséis países y ha sido también el destino de los primeros seis turistas espaciales.

Contenido

Características

Esquema del montaje de la EEI.

En líneas generales, se puede decir que la Estación Espacial Internacional es un gigantesco mecano situado en órbita alrededor de la Tierra a 386 km, de aproximadamente 108 m de longitud sobre 88 m de ancho y una masa de aproximadamente 415 toneladas cuando esté completada en 2010. Con un volumen habitable de unos 938 m3, sobrepasará en complejidad, y con mucho, todo lo que se concibió hasta la fecha. Podrá acoger a siete astronautas permanentemente, quienes se sucederán y relacionarán según las exigencias de las misiones. Su energía será proporcionada por los paneles solares más grandes que jamás se hayan construido, de una potencia de 110 kW.

Resumen de las características a 2010

  • Anchura: 108 m
  • Longitud: 74 m
  • Masa: 420 t
  • Número de personas que la tripularán: 6 en principio
  • Laboratorios: 4 por el momento
  • Espacio habitable: 1.200 m³
  • Velocidad: 29.000 km/h

Historia

La Estación Espacial Internacional contra la negrura del espacio y la delgada línea de la atmósfera de la Tierra. Imagen tomada desde el Transbordador Espacial Discovery antes de que las dos naves espaciales iniciasen su separación.

La historia de la ISS comenzó el 20 de noviembre de 1998, cuando el cohete ruso Protón colocó en órbita el módulo ruso Zaryá diseñado para dotar a la estación espacial de la energía y propulsión iniciales. Meses más tarde la NASA puso en órbita el nodo Unity a través de su transbordador espacial Endeavour.[3]

Los paneles solares de la Estación Espacial Internacional.

El 12 de julio de 2000 se añadió el módulo de servicio ruso Zvezdá (pronunciado /zviozda/)que aportaba los sistemas de soporte vital y preparaba a la estación para recibir a sus primeros astronautas. El 11 de octubre de 2000 se añadió sobre el nodo Unity la estructura integrada ITS Z1 que permite comunicarse con la Tierra. El 2 de noviembre llegan los primeros tripulantes a bordo de una Soyuz lanzada el 31 de octubre de 2000. Un mes después se añadió el primer módulo fotovoltaico que proporcionaba energía solar a toda la estación.

Al año siguiente llegó a la estación espacial el laboratorio más importante, el Destiny, de fabricación estadounidense. Fue acoplado a la estación el 7 de febrero de 2001 mediante el transbordador Atlantis. El 19 de abril de 2001 fue colocado el primer brazo de la ISS, de fabricación canadiense. Con el brazo SSRMS también llegaron un pequeño módulo italiano y una antena UHF. El 12 de julio de ese mismo año se añadió una cámara de descompresión para que los tripulantes pudieran salir de la estación espacial y dar los primeros paseos espaciales. El 14 de septiembre del 2001 se añadió un módulo de atraque ruso con una cámara de descompresión.

El 8 de abril de 2002 se acopló el segmento central ITS S0 del futuro armazón de 91 metros que soportará los grandes paneles solares de los extremos de la ISS. El brazo SSRMS canadiense que se había colocado en el módulo Destiny fue trasladado al segmento central ITS S0 el 5 de junio de ese mismo año. El 7 de octubre se colocó el segmento de estribor ITS S1 del armazón de la estación. El armazón principal se completó el 23 de noviembre de 2002 con el segmento de babor ITS P1.

El 27 de febrero de 2004, los tripulantes Michael Foale y Alexandr Kaleri realizaron el primer paseo espacial que involucraba a la totalidad de la tripulación. La mayoría de los objetivos del paseo, incluyendo la instalación de equipo externo, se lograron antes de que se abortara la misión debido a un problema de refrigeración en el traje de Kalery HL.

El 28 de julio de 2005 llegó a la estación el módulo italiano de carga Raffaello a través del transbordador Discovery de la NASA.

El 27 de junio de 2006 una pieza de basura espacial que posteriormente fue identificada como el satélite militar estadounidense Hitch Hiker 1 lanzado en 1963, y ya fuera de servicio, pasó a aproximadamente 2 kilómetros de la ISS (ésta se mueve a unos 7,7 km/s). Este suceso provocó una situación de alarma y se iniciaron preparativos para una evacuación de urgencia de la Estación Espacial. Este acercamiento estuvo monitorizado por técnicos del CCVE ruso y el Centro de la NASA en Houston, y concluyó sin incidentes. Se estimó que la pieza de chatarra espacial tenía una masa de 79 kilos.

El 7 de julio de 2006 el transbordador Discovery se acopló a la ISS con éxito. Entre la tripulación del Discovery estaba el astronauta alemán Thomas Reiter que junto con el estadounidense Jeff Williams y el ruso Pavel Vinogradov forman tripulación permanente del complejo orbital. Con la llegada del astronauta de la ESA la estación pasa de una tripulación permanente de dos astronautas a tres.

La Estación Espacial Internacional y el Transbordador Espacial Discovery prontos para acoplarse.

El 8 de junio de 2007, el transbordador Atlantis (misión STS-117) parte para la Estación Espacial Internacional para instalar unos nuevos paneles solares[4] tarea que realiza con éxito. El día 10 se detecta una grieta en la cubierta térmica del transbordador Atlantis que debe repararse en vuelo.[5] El día 14 se produce un fallo informático grave que deja sin agua, luz y capacidad de orientación a la estación espacial. En el peor de los casos, ésta debería ser desalojada pero el fallo se soluciona y los sistemas vuelven a funcionar con normalidad.[6]

El 17 de junio de 2007 la astronauta Sunita Williams se convierte en la mujer que más tiempo seguido ha estado en el espacio, al completar 188 días y 4 horas fuera de nuestro planeta.[7]

El 23 de octubre de 2007 entregó el módulo de fabricación italiana Harmony y reestructurará una parte de la Estación preparándola para futuras misiones de ensamblaje.[8] con un peso cercano a las 16 toneladas y servirá como un puerto de enlace para los laboratorios europeos y japoneses.

En febrero de 2008 se añadió el módulo Columbus europeo y en junio el transbordador Discovery visitó nuevamente la Estación Espacial Internacional y añadió componentes nuevos, de los cuales destaca el esperado Kibo Science Laboratory.

En 15 de marzo de 2009 se añadieron cuatro sets de paneles solares a la Estación con el fin de albergar a más tripulantes dentro de ella.

Países participantes

Estados Unidos

NASA logo.svgFlag of the United States.svg

Estados Unidos mediante su agencia espacial gubernamental, la NASA, es la iniciadora del proyecto, y responsable de su buen desarrollo. La principal empresa constructora es el grupo Boeing Space, y su participación material incluye la estructura principal (el armazón que une la estación con los grandes paneles de los extremos), cuatro pares de paneles solares, tres módulos que forman el nodo 1 (Unity) de conexión que incluye las cámaras de acople para las naves espaciales y otros elementos menores. También fabrica los tanques de aire respirable que abastecerán tanto los módulos de vivienda como los módulos de servicio tanto estadounidenses como rusos. La NASA proporciona también el módulo de vivienda, el laboratorio Destiny y el módulo de conexión a la centrifugadora. La logística bajo la responsabilidad de la NASA incluye la potencia eléctrica, las comunicaciones y el tratamiento de los datos, el control térmico, el control del medio ambiente habitable y el mantenimiento de la salud de la tripulación.[9] Los giroscopios de la ISS están también bajo su responsabilidad.

     Contribuyentes primarios.     Países con contrato con la NASA.

Rusia

Roscosmos logo ru.svgFlag of Russia.svg

La Agencia Espacial Federal Rusa (FKA) proporciona alrededor de un tercio de la masa de la ISS, con la participación de sus principales empresas: Rocket Space Corporation-Energía y Krunitchev Space Center. La agencia rusa ha proporcionado un módulo de servicio habitable, que fue el primer elemento ocupado por una tripulación; un módulo de acople universal que permite el acople de naves tanto de Estados Unidos (transbordador espacial) como de Rusia (Soyuz); y varios módulos de investigación. Rusia también se implica bastante en el suministro de la estación así como para su mantenimiento en órbita, utilizando, en particular, naves de suministro de víveres Progress. El módulo de control ruso Zarya fue el primer elemento en ponerse en órbita.

Rusia también proporciona el sistema de aproximación KURS para la ISS, el cual fue usado exitosamente en la estación MIR.[10]

Europa

ESA logo.svgFlag of Europe.svg

La mayoría de los estados miembros de la ESA trabajan en la ISS, en particular, proporcionando el COF (Columbus Orbital Facility, simplemente llamado Columbus), módulo que puede recibir 10 paletas de instrumentos, la mitad europeas, y el ATV (Automated Transfer Vehicle) vehículo que llevará víveres al complejo orbital. La ESA es también responsable del brazo manipulador europeo, que se utilizará desde las plataformas científicas y logísticas rusas, así como sistemas de gestión de datos del módulo de servicio. Sin olvidar los lanzadores Ariane 5, que se utilizarán para el suministro de la ISS de combustible y material a través de los ATV.

Canadá

Flag of Canada.svg

La Agencia Espacial Canadiense asume la realización del brazo robótico SSRMS, también denominado Canadarm, un único dispositivo destinado a proporcionar el montaje y el mantenimiento de la estación,. Canadá proporciona también el SVS (Space Vision System), un sistema de cámaras que ya se probó sobre el brazo manipulador del transbordador espacial estadounidense destinado a asistir a los astronautas encargados de su utilización y herramienta vital para el mantenimiento de la estación.

Japón

Jaxa logo.svgFlag of Japan.svg

La JAXA (Agencia Japonesa de Exploración Aeroespacial) proporciona el JEM (Japanese Experiment Module), que alberga varios compartimentos a presión habitables, una plataforma donde 10 paletas de instrumentos pueden exponerse al vacío espacial y un brazo manipulador específico. El módulo a presión puede por su parte acoger también 10 paletas de instrumentos.

Los siguientes países son meramente colaboradores:

Italia

Asi logo.svgFlag of Italy.svg

Independientemente de su participación en la ESA, la ASI (Agencia Espacial Italiana) proporciona tres módulos logísticos polivalentes. Concebidos para poder integrar la bodega de la lanzadera estadounidense, implican compartimentos a presión y traerán distintos instrumentos y experimentos a bordo de la ISS. La concepción del módulo europeo Columbus se inspira de sobra en estos tres elementos. La ASI proporciona también los nodos 2 y 3 de la estación.

Brasil

LogoAEB transparente.pngFlag of Brazil.svg

Bajo la dirección de la Agencia Espacial Brasileña, el Instituto Nacional de Pesquisas Espaciais proporciona un panel de instrumentos y su sistema de fijación que acogerá distintos experimentos de la estación. Transportado por un transbordador, el panel está destinado a exponerse al vacío espacial durante un largo período.

Perú

Flag of Peru.svg Fundado recientemente en el 2011, la Federacion Espacial de la Republica del Perú ha puesto la iniciativa ,gracias al presidente Ollanta Humala, de ser la primera nación del planeta tierra en tener una estacion espacial en la Luna previsto para el 2035.

Módulos

Actualmente en la Estación Espacial Internacional

Nodo Unity

Artículo principal: Nodo Unity
Módulos de conexión de la ISS Unity (NASA).

El Nodo 1 (o nodo Unity) es la galería de una longitud de aproximadamente 6,5 m y un diámetro de 5,5 m que conecta las áreas de alojamiento y trabajo de la ISS.[11] Además de su conexión a Zarya, el nodo sirve de conexión con el módulo estadounidense Destiny, el de alojamientos y al compartimiento estanco Pirs.

Los elementos esenciales tales como líquidos, así como el control del soporte vital, sistemas eléctricos y de datos, deben pasar por fuerza a través del nodo, ya que éste conecta las áreas de trabajo y habitables. Se instalaron en total más de 50.000 elementos mecánicos, 216 líneas de transporte de líquidos y gases y 121 cables eléctricos internos y externos, empleando más de 10 kilómetros de cable.

Se construyó en Hunstville, Alabama y la instalación principal de hardware en el Unity se completó en junio de 1997 en el Centro de Vuelo Espacial Marshall de la NASA. Fue lanzado a bordo del transbordador Endeavour el 4 de diciembre de 1998. El Unity fue ensamblado al módulo de control Zarya en el transcurso de tres paseos espaciales llevados a cabo durante el séptimo día de misión del Endeavour.

Estructura de armazón integrada (ITS)

Este armazón de aluminio forma la espina dorsal de la Estación Espacial Internacional. El ITS (Integrated Truss Structure) soporta los radiadores de la ISS, los gigantescos paneles solares de sus extremos, la estructura móvil del brazo canadiense y otros equipos.[12]

Inicialmente la NASA diseñó esta estructura como soporte de ocho paneles solares enormes, cuatro de menor tamaño y dos radiadores para la Estación Espacial Freedom. Dicha estación fue cancelada por falta de presupuesto. Una vez firmado el acuerdo para crear una estación internacional la NASA aprovechó el diseño inicial de la estructura de la Freedom y lo aplicó al de la ISS con pequeñas modificaciones.

En 1991 se terminó el diseño de la estructura dividiéndola para ser enviada por partes en la bodega del transbordador. Dividida en cinco segmentos, esta estructura se terminó de ensamblar en 2007.

Zarya

El módulo Zarya se convirtió en la primera pieza de la ISS en 1998.
Artículo principal: Zarya

El módulo Zarya, también nombrado Functional Cargo Block y por las siglas rusas FGB, fue el primer componente lanzado de la estación espacial internacional. Este módulo fue diseñado para proporcionar la propulsión y la energía iniciales del complejo orbital. El módulo presurizado de 19.323 kilogramos fue lanzado en un cohete ruso Protón en noviembre de 1998.[13]

El Zarya fue financiado por Estados Unidos y construido por Rusia. Su nombre significa “salida del sol” en ruso. Es un componente estadounidense de la estación, aunque fuese construido y lanzado por Rusia. El módulo fue construido en el Centro de Investigación y Producción Espacial y el Khrunichev State Research, conocido también como KhSC, localizado en Moscú bajo subcontrato de la compañía Boeing para la NASA.

El módulo Zarya tiene 12,6 metros de longitud y 4,1 metros en su punto más ancho. Tiene una estimación de vida operacional de por lo menos 15 años. Sus paneles solares y sus seis baterías de níquel-cadmio pueden proporcionar un promedio de 3 kW de corriente eléctrica. Sus escotillas laterales permiten el acople de la naves rusas Soyuz y las naves de abastecimiento Progress.

Zvezda

Artículo principal: Módulo de servicio Zvezda
El módulo Zviozda.

El módulo de servicio Zvezda (debe leerse /zviozda/) era la primera contribución completamente rusa a la Estación Espacial Internacional y sirvió como la temprana piedra angular para el primer habitáculo humano de la estación. El módulo proporciona los primeros habitáculos de la estación, los sistemas de soporte de vida, distribución de la corriente eléctrica, sistema de proceso de datos, sistema de mandos de vuelo y sistema de propulsión. También proporciona un sistema de comunicaciones que incluye capacidades de comando como regular el vuelo. Aunque muchos de estos sistemas están siendo sustituidos o suplidos por los componentes estadounidenses de la estación, el módulo de servicio Zviozda seguirá siendo siempre el centro estructural y funcional del segmento ruso de la estación espacial internacional.[14]

Destiny

Artículo principal: Laboratorio Destiny
El Destiny sujetado por el brazo del transbordador Atlantis.

El Destiny es el laboratorio de investigación primario, soporta una amplia gama de experimentos y estudios que intentarán contribuir a la salud, seguridad y calidad de vida para la gente por todo el mundo. El laboratorio de la estación ofrece a los investigadores una oportunidad sin par de probar procesos físicos en ausencia de gravedad. El objetivo de los experimentos de este laboratorio es permitir que los científicos entiendan mejor la Tierra y preparar misiones futuras a la Luna y a Marte.

El transbordador Atlantis acopló mediante su brazo este laboratorio espacial estadounidense a la estación el 8 de febrero de 2001. Se tuvieron que realizar tres paseos espaciales para activarlo.

El laboratorio fue diseñado para sostener sistemas de estantes modulares que podrían ser agregados, quitando o sustituyendo cuanto sea necesario. Pueden contener empalmes fluidos y eléctricos, equipo de video, sensores, reguladores y humidificadores del movimiento para apoyar cualquier experimento que se contenga en ellos.[15]

Cuando llegó a la estación, el Destiny contenía cinco estantes eléctricos y los sistemas de soporte de vida. Las siguientes misiones del transbordador han entregado más estantes y experimentos a las instalaciones, incluyendo el Microgravity Science Glovebox, el Human Research Facility y cinco estantes para llevar a cabo varios experimentos científicos.

Eventualmente el Destiny soportará 13 estantes cargados con experimentos científicos sobre la vida humana, investigación de nuevos materiales, observaciones de la Tierra y usos comerciales. Antes de que la estación este completa, el Destiny será ensamblado con los módulos-laboratorios; Kobi, de la NASA y el Columbus, de la ESA. Además de su papel como laboratorio científico, el Destiny también contiene el centro de control para las operaciones robóticas del brazo de la estación.

Cámara Pirs

Artículo principal: Cámara Pirs
Cámara Pirs.

El compartimiento o cámara de descompresión Pirs posee dos escotillas para salidas extravehiculares, además de dos sistemas de acoplamiento, uno para su unión con el Zviozda, y otro, en el extremo opuesto, para naves Soyuz y Progress.[16]

Fabricado por la empresa rusa S. P. Korolev RSC Energía, el Pirs se emplea como puerto de atraque complementario para vehículos Soyuz y Progress junto al módulo Zviozda. Igualmente sirve como esclusa estanca para permitir la salida de cosmonautas al exterior del complejo de manera que se puedan realizar paseos espaciales desde la estación.

Una nave de carga rusa Progress modificada fue la que llevó el 17 de septiembre de 2001 el módulo Pirs a la ISS. El vehículo Progress usado transportó 870 kg de propergoles y 800 kg de cargas diversas, incluyendo el propio Pirs, así como materiales científicos y de otra índole.

Después de varios paseos espaciales el Pirs quedó perfectamente ensamblado al complejo orbital.

Harmony (Nodo 2)

Artículo principal: Harmony (Nodo 2)

El Harmony, anteriormente llamado Nodo 2, lanzado en la misión STS-120[17] fue acoplado a la Estación Espacial Internacional el 14 de noviembre de 2007.[18]

Fue encargado a la empresa italiana Thales Alenia Space, y construido en Turín.[19] La ESA cedió su propiedad a la NASA en 2003.[20]
Es un módulo de soporte vital, ya que proporciona oxígeno, electricidad, agua y otros sistemas necesarios para el correcto desarrollo de la estancia de los astronautas. Además posee capacidad para albergar dos dormitorios para los seis posibles tripulantes de la IIS.[21] Harmony servirá también como punto de conexión para el módulo europeo Columbus y el laboratorio japonés Kibo[22]

Columbus

El Columbus en el Centro Espacial Kennedy siendo preparado para su lanzamiento.
Artículo principal: Módulo Columbus

Este laboratorio es un módulo cilíndrico muy similar en forma al módulo logístico de funcionamientos múltiples. El módulo contiene 10 estantes ISPR (Estantes Internacionales Estándar de Carga Útil). Hay 4 de ellos en la parte delantera, 4 laterales y 2 en el techo. Los 3 restantes se equipan con los sistemas de soporte de vida. Hay 4 estantes que pueden colocarse con experimentos en los paneles externos para someterlos al vacío espacial. Estos paneles se encuentran arriba y abajo de la escotilla.

El laboratorio tiene una longitud de 6,87 m, un diámetro de 4,49 m y un peso bruto de 10,3 toneladas, que puede llegar hasta los 19,3 t cuando el laboratorio este a su máxima capacidad.

El Columbus se remonta a 1985 cuando la ESA aprobó el programa de mismo nombre. El programa pretendía crear una estación espacial europea, acompañada por el Hermes (un proyecto de mini-nave europea). El proyecto incluía una plataforma de experimentación de vuelos no tripulados, un módulo presurizado unido (APM) y un satélite de comunicaciones con disponibilidad para compartir datos entre él y la Tierra. La decisión final fue incluir el Columbus en la Estación Espacial Internacional debido a algunos recortes presupuestarios. De todo el proyecto creado para una estación espacial europea sólo permaneció el APM, renombrado Columbus Orbital Facility o comúnmente conocido como Columbus.[23]

Se prevé que su vida útil sea de 10 años.

Kibo (JEM)

El Módulo Presurizado Kibo junto con el resto de la participación japonesa en la estación espacial.
Artículo principal: Kibo

El JEM (módulo japonés de experimentos) —llamado en japonés Kibo (希望 Kibō?), que significa «esperanza»— es el primer complejo habitable espacial de Japón y realiza las capacidades únicas de investigación de la Estación Espacial Internacional.

En el Kibo se realizan experimentos en las áreas de medicina espacial, biología, observaciones de la Tierra, producción material, biotecnología e investigación de las comunicaciones. Los experimentos y los sistemas de Kibo funcionan en las operaciones de la estación espacial desde la sala de control de la misión, o SSOF, en el Space Center de Tsukuba en la prefectura de Ibaraki, Japón.

El módulo presurizado Kibo fue fabricado en Nagoya y tiene 11,2 metros de largo. Kibo está formado por varios componentes: dos instalaciones de investigación, un módulo presurizado y una instalación expuesta al espacio; llevarán un módulo de logística unido a cada uno de ellos; un sistema de manipulación alejado; y una unidad del sistema de comunicación de la inter-órbita.espacial.[24]

Fue acoplado a la Estación Espacial Internacional a través de los vuelos STS-123 STS-124 y STS-127. El montaje se concluyó en junio de 2008. Su punto de conexión con la ISS es el módulo Harmony.

Mini-Research Module 2

Artículo principal: Mini-research module 2

Lanzamiento: 10 de noviembre de 2009 con la Soyuz FG.

Este componente ruso para la ISS, MRM2 se utilizará para el atraque de buques de la Soyuz y de la Progress, como una esclusa para paseos espaciales, y como una interfaz para experimentos científicos.

Tranquility (Nodo 3)

Nodo 3 Tranquility.
Artículo principal: Tranquility (Nodo 3)

El último de los nodos de la estación de Estados Unidos. El nodo Tranquility contiene un sistema de apoyo vital avanzado para reciclar las aguas residuales de la tripulación y generar oxígeno para que la tripulación respire. El módulo está provisto de seis posiciones de atraque, sin embargo cuatro de esas localizaciones están deshabilitadas ya que los módulos que estaban previstos añadirse en un inicio al Tranquility fueron cancelados. Al igual que con el módulo Harmony (Nodo 2) fue construido en Italia pero por un contrato de la ESA con la NASA, siendo propiedad de la última. Es utilizado como compartimento de carga, ya que su anterior cometido estaba relacionado con el módulo habitacional[25] y con el de Crew Return Vehicle (vehículo de retorno de la tripulación), que fueron cancelados en 2001 y 2002 respectivamente.[26] Fue lanzado en febrero de 2010 con el Transbordador Espacial Endeavour como parte de la misión STS-130.

Cúpula

Cúpula de la ISS.
Artículo principal: Cúpula (ISS)

El módulo Cúpula[27] está concebido para ser un observatorio y torre de control de la estación espacial. Llamado así por su forma de cúpula cuenta con siete ventanas que proporcionarán una visión panorámica a los tripulantes para observar y dirigir operaciones en el exterior de la estación.

El módulo controlará terminales de trabajo y otro hardware, como el brazo robótico de la estación y podrá comunicarse con los otros miembros en otras partes de la estación o en el exterior durante los paseos espaciales. La cúpula también será utilizada como observatorio de la Tierra.

La cúpula es el resultado de un acuerdo de intercambio bilateral entre la Agencia Espacial Europea (ESA) y la NASA. La ESA, encargada de su construcción, contrató a la empresa Alenia Spazio como contratista principal y coordina a otras seis empresas europeas: APCO (Suiza), EADS Space Transportation (Alemania), CASA (España), SAAB Ericsson and Lindholmen Development (Suecia), y Verhaert (Bélgica)[28]

Este módulo fue almacenado en el Centro Espacial Kennedy, hasta su lanzamiento en febrero de 2010 con el Transbordador Espacial Endeavour como parte de la misión STS-130.

Futuros componentes

Ordenados por orden cronológico previsto de lanzamiento.

Mini-Investigación Módulo 1

Artículo principal: Mini-research module 1

Lanzamiento: mayo del 2010 con el Transbordador Espacial Atlantis la STS-132.

MRM1 se utilizará para almacenar la carga para el acoplamiento a bordo de la ISS.

Módulo Laboratorio Multipropósito

Módulo del Laboratorio Multipropósito.

Lanzamiento: diciembre del 2011 con el cohete Protón-M.

La Agencia Espacial Rusa ha anunciado que lanzará en 2011, mediante un cohete del tipo Protón el MLM (Módulo Laboratorio Multipropósito).[29] Este módulo será el más importante que Rusia ponga en órbita para fines científicos en la Estación Espacial Internacional. Dependiendo de su fecha real puede ser el tercer módulo o cuarto dedicado en la EEI para la investigación científica. Este módulo equipará un sistema de control de altitud que podrán usar en caso de necesitarlo los miembros de la Estación y será acoplado en el puerto de atraque del módulo Zviozda. El Brazo Robótico Europeo será lanzado junto a este laboratorio por el acuerdo que firmaron en 2005 la ESA y el Roskosmos.

Módulo portuario de carga

El plan de ensamblado contemplaba un Módulo de investigación ruso o RM, pero éste fue cancelado por problemas en 2007[30] y se decidió enviar en su lugar el Módulo portuario de carga que se ensamblará a la Estación Espacial Internacional mediante la misión STS-131 con fecha prevista para el año 2010.[31] Entre las funciones que realizará cabe destacar:

  • Funcionará como muelle de atraque para las naves Soyuz
  • Módulo de carga
  • Traerá repuestos y piezas nuevas, como un radiador para MLM (570 kilogramos) y una sección del reemplazo del empalme de la ERA europea (150 kilogramos) entre otros.

Brazos robóticos

Canadarm 2

Artículo principal: Canadarm 2
El Canadarm2 en la ISS.

El Canadarm2 es un brazo de fabricación canadiense que tiene, además de un tamaño y peso excepcionales, características únicas que lo colocan muy por delante de su ya viejo hermano del Transbordador Espacial.[32]

Tiene 17,6 metros de largo (2,6 metros más que el del transbordador) y es cuatro veces y media más ligero (1800 kg contra 410). En realidad no es un brazo sino dos que cuenta con una mano inteligente en cada extremo.[33]

El Canadarm2 puede contar o no con una base, según se requiera, y ella puede ser cualquiera de las dos manos. Cada una de estas manos puede sujetar unos peldaños especiales que se colocarán en puntos estratégicos de la ISS y que la proveerán de energía, datos y conexiones de video. Agarrándose de estos peldaños y soltándose coordinadamente, tal como lo hace un mono para pasar de rama en rama, este robot será capaz de desplazarse de un extremo a otro de la ISS y llegar hasta donde se le requiera para tareas tan delicadas como enchufar conectores, o tan pesadas como ayudar a acoplarse al transbordador estadounidense.

Otra de sus virtudes es la fuerza bruta. El Canadarm2 será capaz de manejar volúmenes como vagones ferroviarios de hasta 116 toneladas.

El nuevo brazo fue estrenado en junio de 2001, cuando el Atlantis trajo la cámara de descompresión Quest para los paseos espaciales de la ISS, el Canadarm2 ayudó a colocar la cámara en su sitio.

Esta es sólo la primera parte del Sistema de Servicio Móvil de la estación espacial (SSRMS). La segunda parte es el Sistema de Base Móvil, del tamaño de un camión, se desplazará sobre raíles para llevar al brazo canadiense más rápidamente de un extremo a otro de la estación espacial. La tercera y última parte, es el Manipulador Hábil para Propósitos Especiales. Es una mano inteligente equipada con luces, cámaras y pañol de herramientas que podrá instalar y reemplazar baterías, fuentes de energía y hasta delicadas computadoras.

El Canadarm2 se controla desde el laboratorio Destiny y los astronautas que lo operan serán apoyados por dos subcentros de control en la Tierra, uno en Houston (EE. UU.) y el otro en Quebec (Canadá), que están en condiciones de impartirle órdenes extras en caso de que sea necesario.

Brazo Robótico Europeo (ERA)

Artículo principal: Brazo Robótico Europeo

El Brazo Robótico Europeo (European Robotic Arm) se utilizará para instalar y sustituir placas solares, revisar y ensamblar módulos y para trasladar a los astronautas que realizan los paseos espaciales.

Mide unos 11,3 m de largo y pesa 630 kg y es capaz de mover hasta 8000 kilogramos. En apariencia es casi como un brazo humano, con articulaciones y con la capacidad de coger, sujetar y girar como si de una verdadera mano se tratase. Es simétrico en su construcción.[34]

El brazo se puede dirigir desde el exterior, a través de un panel, o desde una sala de control en el interior de la ISS denominada Cúpula por su forma y que a través de sus siete ventanas permitirá a los astronautas ver todos los movimientos del brazo robótico.

Fue lanzado en 2009.[35]

Vehículos de transporte

Para el transporte de astronautas y víveres y para la construcción de la misma ISS, cada agencia espacial participante cuenta con un vehículo de transporte. Estos vehículos se pueden dividir en tripulados y no tripulados.

Tripulados

Con la salida del transbordador espacial de la NASA del servicio, solo Rusia posee un programa espacial tripulado aplicable a la ISS. Los astronautas de las demás nacionalidades se valen de los vehículos rusos Soyuz para llegar al complejo orbital.

Aterrizaje del transbordador Atlantis.

Transbordador Espacial

La Soyuz TMA-6 aproximándose a la Estación Espacial Internacional en 2005.

El Transbordador Espacial estadounidense se encargó, hasta julio de 2011, del ensamblaje de la estación y de transportar astronautas (hasta siete) y cuantiosos víveres hasta ella.

Soyuz

Artículo principal: Soyuz

La nave rusa Soyuz fue la nave que llevó a los primeros habitantes de la ISS. Se encarga de mantener la tripulación permanente de la estación espacial transportando hasta tres astronautas. Sirve como nave de emergencia por si la ISS debe ser evacuada dado que cada nave Soyuz permanece acoplada una media de seis meses en la estación. Desde 2002 se utilizan las Soyuz TMA diseñadas especialmente para la ISS.[36]

No tripulados

Las agencias espaciales de Rusia, Europa y Japón, mediante sus naves de abastecimiento no tripuladas se encargarán de transportar víveres a la estación, aparte del Transbordador Espacial. Hasta ahora lo han estado haciendo los rusos con el vehículo Progress, y en enero de 2008 lo sustituirá el europeo ATV, mucho más grande, que complementará en 2009 el japonés HTV.[37]

Progress

Artículo principal: Progress
Nave Progress M.

Las naves Progress rusas son utilizadas para llevar víveres y combustible a la ISS. Ya fueron utilizadas con las estaciones Salyut 6, Salyut 7 y Mir. Además de suministros y equipo, las Progress utilizan sus motores para elevar de forma regular la órbita de la estación. Su diseño está basado en la nave Soyuz.

ATV

Vehículo de Transporte Automático de un solo uso, se encarga de abastecer a la Estación Espacial Internacional (ISS) y de evacuar los residuos. El vehículo de carga no tripulado Jules Verne, construido por la ESA,[38] fue el primero de este tipo de naves, que poseen una mayor capacidad que las Progress,[39] las utilizadas por la Agencia Espacial Rusa actualmente. Su primer lanzamiento se realizó el 9 de marzo del año 2008 en un cohete Ariane 5[40]

HTV

Artículo principal: Vehículo de transferencia H-II

Es una aportación de la Agencia Espacial Japonesa al proyecto internacional. Transporta agua, suministros y experimentos a la Estación Espacial Internacional. Aunque es de tamaño mayor que las naves Progress necesita ser acoplado manualmente usando el Canadarm2 porque no dispone de sistema de acoplamiento automatizado. En su configuración habitual el vehículo está separado en dos secciones: una presurizada que se conecta al puerto nadir del Harmony, y otra no presurizada, generalmente para el transporte de los experimentos de exposición espacial para el módulo Kibo.

Expediciones a la ISS

La Estación Espacial Internacional es la infraestructura espacial más visitada en la historia de la astronáutica. A día de 12 de julio de 2006, ha tenido ya 153 visitantes (no distintos). La MIR tuvo 137 visitantes (no distintos). El número de visitantes distintos de la ISS es de 120.

Costos

La estimación de los costos totales de la ISS es de 100.000 millones de dólares estadounidenses (USD)[41] Dar una valoración de costos exacta para la ISS es, sin embargo, muy complicado, es difícilmente determinable qué costes se deben añadir realmente al programa de la ISS o cómo la contribución rusa debe ser medida, dado que la agencia rusa del espacio funciona con USD considerablemente más bajos que los otros socios.

NASA

En contraste con la creencia común, la mayoría de los costes de la NASA no se destinan inicialmente a construir los módulos de la ISS y la estructura externa en tierra o para los vuelos de tripulación y abastecimiento de la ISS. De hecho el programa del transbordador espacial, que a fecha de 2006 cuesta casi 5000 millones de dólares anuales, normalmente no se considera parte del presupuesto del ISS, aunque los transbordadores se han utilizado casi exclusivamente para los vuelos a la ISS desde 1998.

La petición de presupuesto de la NASA al gobierno correspondiente a 2007 enumera los costes para la ISS (sin costes del transbordador) como 25.600 millones de dólares desde 1994 a 2005.[42] En 2005 y 2006 se asignaron al ISS entre 1700 y 1800 millones de dólares cada año. Esta suma se elevará en 2010, cuando se calcula que alcanzará los 2300 millones de dólares y entonces deberá permanecer en el mismo nivel, al menos hasta 2016 (fecha del final previsto del programa).

Los 1800 millones de dólares dados en 2005 se distribuyen en:[43]

  • Desarrollo de hardware nuevo: solamente 70 millones de dólares fueron asignados al desarrollo principal, en primera instancia al desarrollo de sistemas de navegación, los soportes de datos o de vida.
  • Operaciones del transbordador espacial: 800 millones de dólares, que se dividen en 125 millones para cada sector: software, sistemas de logística y mantenimiento y actividades extravehiculares. Además 150 millones adicionales están expendidos para vuelo, sistemas de aeroelectrónica y la tripulación. El resto de los 250 millones de dólares va al mantenimiento total de la ISS.
  • Lanzamiento y operaciones de la misión: aunque los costes del lanzamiento del transbordador no se consideran parte del presupuesto de la ISS, la integración de la misión (300 millones de dólares), la ayuda médica (25 millones) y el sitio del lanzamiento del transbordador (125 millones) están dentro del presupuesto de la ISS.
  • Integración de programa operaciones: 350 millones de dólares estuvieron destinados a mantener y sostener los vuelos estadounidenses y el hardware y software de tierra para asegurar la integridad del diseño de la ISS y la continua operabilidad segura del complejo orbital.
  • Abastecimiento y tripulación de la ISS: solamente 140 millones de dólares estuvieron destinados para la compra de víveres, capacidad de carga y tripulación para los vuelos de las naves Progress y Soyuz.

Proyecciones de la NASA que asume los costes medios de 2500 millones de dólares a partir del 2011 hasta el 2016 y el final del dinero destinado a la ISS en 2017 (entre 300 y 500 millones) después de la bajada en 2016, los costes totales del proyecto de la ISS para la NASA desde el comienzo del programa en 1993 hasta su final serán cerca de 53.000 millones de dólares. Los 33 vuelos del transbordador (que, según lo mencionado arriba, normalmente no se consideran parte de los costes totales de la ISS) para la construcción y el mantenimiento de la ISS será alrededor de 35.000 millones de dólares. También ha habido costes considerables para diseñar la Estación Espacial Freedom en los 1980s y los 1990s, antes del programa de la ISS que comenzó en 1993. Por lo tanto, aunque los costes reales contribuidos a la ISS son solamente la mitad de los 100.000 millones de dólares citados a menudo en los medios, si se une con los costes del transbordador y el diseño del proyecto precursor, alcanza casi los 100.000 millones de dólares de gastos, solamente para la NASA.

FKA

Una parte considerable del presupuesto de la Agencia Espacial Federal Rusa se utiliza para la ISS. Desde 1998 ha habido unas dos docenas de vuelos de naves Soyuz y Progress. Desde el desastre del Columbia ha sido la encargada de relevar la tripulación permanente y mantener el abastecimiento de la estación desde 2003 hasta 2006. La pregunta de cuánto tiempo puede aguantar Rusia los costes de la estación es difícil de responder. Los dos módulos rusos en órbita son actualmente derivados del programa de la MIR y por lo tanto los costes del desarrollo son mucho más bajos que para otros módulos, además el cambio entre el rublo y el dólar no está mostrando adecuadamente una comparación verdadera de cuáles son los costes reales para Rusia.

Los 20 millones de dólares que cada turista espacial ha pagado por un asiento en la Soyuz a la ISS ha compensando solamente una parte muy pequeña de la contribución financiera de Rusia a la ISS.

ESA

La ESA calcula que su contribución sobre el curso de vida del proyecto (unos 30 años) será de 8.000 millones de euros.[44] Los costes para el laboratorio Columbus suman ya más de 1000 millones de euros, los costes para el desarrollo del ATV suman varios cientos de millones y el coste añadido de cada lanzamiento de Ariane 5 llega alrededor de los 125 millones de euros, cada lanzamiento de ATV sumará también costes considerables.

JAXA

El laboratorio Kibo ha costado 2800 millones de dólares[45] según un artículo reciente de este año. Además los costes anuales para el laboratorio Kibo sumarán alrededor de unos 350 a 400 millones de dólares estadounidenses.[46]

CSA

Canadá, cuya contribución a la ISS es el Canadarm2 con el soporte móvil, se estima que pasados 20 años habrá contribuido con cerca de 1400 millones de dólares canadienses a la ISS[47]

Turismo espacial

Artículo principal: Turismo espacial

A partir de 2008, 6 turistas han visitado la ISS, el pago es efectuado por EE. UU., cuesta alrededor de 25 millones de dólares. Los turistas, o Participantes Espaciales, se pusieron en marcha y regresó a través de la rotación de la tripulación rusa Soyuz en misiones espaciales. Además, la ISS fue el lugar elegido para la primera boda espacial, en la que el cosmonauta ruso Yuri Malenchenko, de la Expedición 7, contrajo matrimonio con Ekaterina Dmitrieva, quien estaba en Texas en ese momento. El último vuelo de turismo espacial a la ISS se llevó a cabo en abril de 2009. Después de eso, la estación será actualizada a una tripulación permanente de 6 personas, lo que significa que no va a haber asientos disponibles en la Soyuz y como consecuencia, no va a haber asientos para Space Adventures, la empresa que ejecuta las visitas.[cita requerida]

Incidentes

El jueves 12 de marzo de 2009 el objeto 25090 PAM-D estuvo en ruta de colisión con los desechos de la ISS, activando un plan de contingencia de último minuto debido a la tardanza en detectar el evento desde Houston. Como medida de precaución los astronautas abordaron la cápsula rusa Soyuz, cerrando las compuertas respectivas y activando el control automático de la ISS. La cápsula Soyuz permanece constantemente acoplada a la estación espacial como medida de protección, siendo el único medio de evacuación en este tipo de casos.[48] El viernes 6 de noviembre de 2009 ocurrió un hecho similar con un objeto de menor tamaño pero que orbitó a solo 500 metros de la ISS.[49]

Véase también

Referencias

  1. «International Space Station Status Report #06-7» (en inglés). NASA (17 de febrero de 2006). Consultado el 16 de mayo de 2006.
  2. 10 de estos miembros están participando ahora activamente. Austria, Finlandia, Irlanda, Portugal y Reino Unido eligieron no participar; Grecia y Luxemburgo entraron a formar parte después de la ESA.«ESA - Human Spaceflight and Exploration - European Participating States» (en inglés). ESA. Consultado el 3 de julio de 2005.
  3. Historia ISS Enciclopedia Encarta
  4. Datos misión STS-117
  5. Grieta en el Atlantins
  6. Solución de los problemas de la ISS
  7. Récord Sunita Williams
  8. [1]
  9. International Space Station Backgrounder (en inglés).
  10. Página Espacial. **Las computadoras del Buran **
  11. Nasa.gov (el módulo Unit; en inglés).
  12. Nasa.gov (ITS; en inglés).
  13. Nasa.gov (módulo Zarya; en inglés).
  14. Nasa.gov (módulo Zviozda; en inglés).
  15. Nasa.gov (laboratorio Destiny; en inglés).
  16. Nasa.gov (cámara Pirs; en inglés).
  17. Datos misión STS-120
  18. Instalación Módulo Harmony
  19. Nasa.gov (módulo Harmony; en inglés).
  20. Esa.int (cesión de la propiedad a la NASA; en inglés).
  21. Plan de la NASA
  22. Informe ISS
  23. «Nasa - Modulo Culumbus» (en inglés). NASA.
  24. Nasa.gov (módulo Kibo; en inglés).
  25. Explicación de la cancelación del Módulo Habitacional (en inglés)
  26. FAS.org (fecha de cancelación y más datos del X-38 Crew Return Vehicle; en inglés).
  27. Cúpula(en inglés)
  28. Ejercicio Económico 2002 de la ESA y contrato bilateral con empresas
  29. MLM (en inglés)
  30. Módulo de investigación ruso (en inglés)
  31. Información STS-131
  32. Nasa.gov (Canadarm 2; en inglés).
  33. Nasa.gov (comparación de los brazos robóticos del Transbordador y del Canadarm 2; en inglés).
  34. Brazo robótico europeo (en inglés)
  35. Fecha de lanzamiento ERA (en inglés)
  36. Diseño naves Soyud(en inglés)
  37. ATV ESA (en inglés)
  38. ATV Jules Verne(en inglés)
  39. Nasa.gov (descripción de las naves Progress; en inglés).
  40. y fecha de lanzamiento del ATV Jules Verne
  41. «¿Cuánto cuesta la ISS?» (en inglés). Estación Espacial Internacional. ESA (9 de agosto de 2005).
  42. «Plan estratégico NASA 2006» (en inglés). Estación Espacial Internacional. NASA (2006).
  43. «International Space Station Major Events FY 2005» (en inglés). International Space Station. NASA (2005).
  44. ESA: ISS Human Spaceflight and Exploration (en inglés).
  45. Etranger World: Major Changes for Japan's space sector(en inglés)
  46. Space News: Japan Seeking 13 Percent Budget Hike for Space Activities (en inglés)
  47. «International Space Station facts and figures» (en inglés).
  48. ABC. «Chatarra casi impacta con la iss» (en español) págs. 1.
  49. “Un objeto de 5 cm puede destruir la Estación Espacial Internacional”. La Informacion.com; 10 de noviembre, 2009

Enlaces externos


Wikimedia foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Mira otros diccionarios:

  • Estación Espacial Internacional — La Estación Espacial Internacional (en inglés International Space Station (ISS), en ruso Международная Космическая Станция(МКС)) es consecuencia de la fusión de los proyectos Freedom de EE.UU. y Mir 2 de Rusia. Empezó a ser construida en 1998.… …   Enciclopedia Universal

  • Estación Espacial Internacional (EEI) — Estación espacial ensamblada en órbita terrestre a partir de módulos, básicamente construidos por EE.UU. y Rusia, con la asistencia y el aporte de componentes de un consorcio multinacional. El proyecto, que comenzó como un esfuerzo de EE.UU.,… …   Enciclopedia Universal

  • Vuelos espaciales tripulados a la Estación Espacial Internacional — Anexo:Vuelos espaciales tripulados a la Estación Espacial Internacional Saltar a navegación, búsqueda Esta es una lista cronológica de los vuelos espaciales tripulados a la Estación espacial internacional. Los vuelos no tripulados no están… …   Wikipedia Español

  • Anexo:Vuelos espaciales tripulados a la Estación Espacial Internacional — Esta es una lista cronológica de los vuelos espaciales tripulados a la Estación espacial internacional. Los vuelos no tripulados no están incluidos (véase Lista de vuelos espaciales no tripulados a la ISS para más detalles). Los tripulantes de la …   Wikipedia Español

  • Experimento de materiales de la Estación Espacial Internacional — Saltar a navegación, búsqueda logotipo de MISSE El experimento de materiales de la Estación Espacial Internacional (MISSE), del inglés Materials International Space Station Experiment, es una serie de experimentos montado en el exterior de la… …   Wikipedia Español

  • Vuelos espaciales no tripulados a la Estación Espacial Internacional — Anexo:Vuelos espaciales no tripulados a la Estación Espacial Internacional Saltar a navegación, búsqueda Esta es una lista de vuelos espaciales no tripulados a la Estación Espacial Internacional. La negrita significa que se trata de un vuelo de… …   Wikipedia Español

  • Zaryá (Estación Espacial Internacional) — El módulo Zaryá visto desde el transbordador espacial Endeavour durante la STS 88 (NASA). Zaryá o Zarya (ruso: Заря, alba o amanecer ), conocida formalmente como Bloque de Carga Funcional (en ruso функционально грузовой блок, ФГБ, transliterado… …   Wikipedia Español

  • Anexo:Vuelos espaciales no tripulados a la Estación Espacial Internacional — Esta es una lista de vuelos espaciales no tripulados a la Estación Espacial Internacional. La negrita significa que se trata de un vuelo de ensamblaje. Nave espacial Misión Lanzadera Lanzamiento (UTC) Acoplamiento (UTC) Desacople (UTC) Duración… …   Wikipedia Español

  • Estación espacial — Internacional, 16 de octubre de 2002. Una estación espacial es una construcción artificial diseñada para hacer actividades en el espacio exterior, con muy diversos fines. Se distingue de otra nave espacial tripulada por su carencia de un sistema… …   Wikipedia Español

  • Estación espacial — ► locución ASTRONÁUTICA Nave puesta en órbita alrededor de la Tierra, en la que los astronautas permanecen cierto tiempo para realizar observaciones y experimentos científicos. * * * Una estación espacial es una estructura artificial diseñada… …   Enciclopedia Universal

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”