- Ecuación de Poisson
-
Ecuación de Poisson
En matemática y física, la ecuación de Poisson es una ecuación en derivadas parciales con una amplia utilidad en electrostática, ingeniería mecánica y física teórica. Su nombre se lo debe al matemático, geómetra y físico francés Siméon-Denis Poisson.
La ecuación de Poisson se define como:
donde es el operador laplaciano, y f y φ son funciones reales o complejas. En un sistema de coordenadas cartesianas tridimensional, toma la forma:
Si f = 0, la ecuación se convierte en la ecuación de Laplace
Contenido
Problema de Poisson
La ecuación de Poisson junto con las condiciones de contorno homogéneas, constituye uno de los tres problemas clásicos relacionados con el operador laplaciano que se detallan a continuación. Concretamente el problema de Poisson es el problema de encontrar una función definida sobre el dominio Ω que satisfaga:
(1)
Este tipo de problema puede ser resuelto de manera sencilla, mediante el método de la función de Green, para n > 2:
Problemas de potencial
La ecuación anterior aparece en problemas electrostáticos y de potencial gravitatorio. En esos problemas ρ representa la densidad de carga eléctrica o bien la densidad de masa. Además la constante cn debe ser tomada 1/ε0 para problemas electrostáticos (en SI), mientras que en problemas de potencial gravitatorio se toma como cn = 4πG.
Problema de Dirichlet
El problema de Dirichlet es un problema de encontrar una función armónica sobre un dominio tal que sea igual a otra función dada sobre el contorno del dominio:
(2)
En electrostática el problema de Dirichlet se corresponde con el problema de encontrar el campo dentro de una cavidad metálica "conectada a tierra" (potencial constante) de forma Ω dentro de la cual hay una distribución de carga dada por ρ.
Relación con el problema de Poisson
Existe un medio para reducir el problema de Dirichlet a un problema de Poisson. Si es una función de clase C1 sobre la frontera del dominio y es una extensión de f a todo el dominio Ω que sea de clase C2, es decir:
Entonces la solución del problema de Dirichlet ( ) viene dada por una función suma de la extensión anterior y otra función que es solución de un problema de Poisson como ( ):Problema de Von Neumann
El problema de Von Neumann es similar al anterior pero en lugar de fijar el valor de la función incógnita sobre la frontera, fija el valor de la derivada perpendicularmente a la superficie.
(3)
Referencias
Enlaces externos
Categorías: Ecuaciones en derivadas parciales | Electrostática | Física matemática
Wikimedia foundation. 2010.