Polinomio separable

Polinomio separable

Polinomio separable

En matemática, un polinomio P(X) es separable sobre un cuerpo K si sus raíces en una clausura algebraica de K son distintas - es decir P(X) tiene factores lineales distintos en una extensión de cuerpo suficientemente grande. Equivalentemente, P es separable si y solo si es coprimo con su derivada P′.

Los polinomios irreducibles sobre un cuerpo perfecto son separables, lo que incluye en particular todos los cuerpos de característica 0, y todos los cuerpos finitos. Este criterio es de vital importancia en la teoría de Galois. En este contexto, el concepto de separabilidad es de menor importancia si P no se supone irreducible, ya que las raíces repetidas pueden simplemente reflejar que P no es libre de cuadrados.

El criterio que nos lleva a sacar conclusiones rápidas sobre si P es irreducible y no separable es que P′(X) = 0. Esto solo es posible en cuerpos de característica p: necesitamos tener P(X) = Q(Xp) donde el número primo p es la característica.

A continuación veremos un ejemplo:

P(X) = XpT

con K un cuerpo de funciones racionales en la indeterminada T sobre un cuerpo finito con p elementos. Aquí uno puede probar directamente que P(X) es irreducible y no separable. De hecho, este es el típico ejemplo donde se puede ver la importancia de la inseparabilidad; en términos geométricos P representa la aplicación en la recta proyectiva sobre un cuerpo finito, tomando coordenadas como sus potencias pesimas. Dichas aplicaciones son fundamentales en la geometría algebraica de cuerpos finitos.

Si L es la extensión de cuerpo K(T1/p) (el cuerpo de descomposición de P) entonces L/K es un ejemplo de extensión de cuerpo inseparable pura. Es de grado p, pero no tiene automorfismos que dejan fija K, a parte de la identidad, ya que T1/p es la única raíz de P. Esto muestra que la teoría de Galois no es aplicable en este entorno.

Se puede ver que el producto tensorial de cuerpos de L consigo mismo sobre K para este ejemplo tiene elementos nilpotentes no nulos. Ésta es otra manifestación de la inseparabilidad: la operación de producto tensorial en cuerpos necesita no producir un anillo que sea producto de cuerpos.

Si P(x) es separable, y sus raíces forman un grupo (un subgrupo del cuerpo K), entonces P(x) es un polinomio aditivo.

Obtenido de "Polinomio separable"

Wikimedia foundation. 2010.

Игры ⚽ Нужна курсовая?

Mira otros diccionarios:

  • Extensión separable — Saltar a navegación, búsqueda En matemáticas, una extensión separable de un cuerpo K es un cuerpo L que contiene a K y que puede ser generado adjuntando a K un conjunto de elementos α, tales que son raíces de polinomios separables sobre K. En… …   Wikipedia Español

  • Emmy Noether — Amalie Emmy Noether Nacimiento 23 de marzo de 1882 Erlangen, Baviera, Alemania Fallecimiento …   Wikipedia Español

  • Extensión de Galois — Saltar a navegación, búsqueda En álgebra abstracta, una extensión de cuerpo algebraica E/K se dice extensión de Galois (o extensión galoisiana) si es una extensión normal y separable. En este caso, se puede considerar el grupo de Galois de la… …   Wikipedia Español

  • Extensión simple — Saltar a navegación, búsqueda En la teoría de cuerpos (una rama del álgebra), una extensión simple es una extensión de cuerpos L:K de manera que L está generado por un solo elemento. Contenido 1 Construcción 2 Definición de extensión simple …   Wikipedia Español

  • Función homogénea — En matemática, una función homogénea es una función que presenta un comportamiento multiplicativo de escala interesante: si todos los argumentos se multiplican por un factor constante, entonces el valor de la función resulta ser un cierto número… …   Wikipedia Español

  • Elemento primitivo — Saltar a navegación, búsqueda En matemática, un elemento primitivo de una extensión de cuerpos L/K es un elemento ζ de L tal que L = K(ζ), o en otras palabras, L está generado por ζ sobre K. Esto significa que todo elemento de L puede ser escrito …   Wikipedia Español

  • Teoría de cuerpos — La teoría de cuerpos es una rama de la matemática que estudia las propiedades de los cuerpos. Un cuerpo es una entidad matemática para la cual la adición, sustracción, multiplicación y división están bien definidas. Contenido 1 Historia 2… …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”