- Elemento primitivo
-
Elemento primitivo
En matemática, un elemento primitivo de una extensión de cuerpos L/K es un elemento ζ de L tal que
- L = K(ζ),
o en otras palabras, L está generado por ζ sobre K. Esto significa que todo elemento de L puede ser escrito como cociente de dos polinomios en ζ con coeficientes en K.
Si la extensión L/K admite un elemento primitivo, entonces L puede ser una extensión finita de K, caso en el que ζ es un elemento algebraico de L sobre K, o en cambio L es isomorfo al cuerpo de funciones racionales sobre K en una indeterminada, en este caso ζ es un elemento trascendente de L sobre K.
El teorema del elemento primitivoresponde a la pregunta de qué extensiones finitas de cuerpos tienen elementos primitivos. Por ejemplo, no es obvio que si se junta al cuerpo Q de números racionales las raíces de los siguientes polinomios
- X2 − 2
y
- X2 − 3,
llamadas α y β respectivamente, para obtener un cuerpo K = Q(α, β) de grado 4 sobre Q, donde K es Q(γ) para un elemento primitivo γ. De hecho, uno puede ver que
- γ = α + β
las potencias de γi para 0 ≤ i ≤ 3 pueden ser expresadas como combinación lineal de 1, α, β y αβ a coeficientes enteros. Tomando dichas igualdades como un sistema lineal de ecuaciones, se puede resolver para α y β sobre Q(γ), la cual cosa implica que dicha elección de γ es en realidad un elemento primitivo en este ejemplo.
En general, el teorema del elemento primitivo se enuncia de la siguiente forma:
- La extensión de cuerpo L/K es finita y tiene un elemento primitivo si y solo si hay un número finito de subextensiones de cuerpos F con K ⊆ F ⊆ L.
Un importante corolario de dicho teorema afirma:
- Toda extensión separable finita L/K tiene un elemento primitivo.
Dicho corolario es aplicable al ejemplo expuesto más arriba (y a muchos similares), ya que Q tiene característica 0 por lo que toda extensión finita sobre Q es separable.
Para extensiones inseparables (o no separables), se puede afirmar lo siguiente:
- Si el grado de la extensión [L:K] es un número primo, entonces L/K tiene un elemento primitivo.
Si el grado de la extansión no es un número primo y la extensión no es separable, se pueden encontrar contraejemplos. Por ejemplo, si K es Fp(T,U), el cuerpo de las funciones racionales con dos indeterminadas T y U sobre el cuerpo finito con p elementos, y L se obtiene a partir de K adjuntando una raíz pesima de T, y de U, entonces no existe ningún elemento primitivo de L sobre K. De hecho se puede ver que para cualquier α en L, el elemento αp pertenece a K. Además tenemos que [L:K] = p2 pero no existen elementos de L con grado p2 sobre K, como un elemento primitivo debería tener.
Véase también
Categorías: Wikipedia:Fusionar | Teoría de cuerpos
Wikimedia foundation. 2010.