Radiactividad

Radiactividad
Diagrama de Segrè. El color indica el periodo de semidesintegración de los isótopos radiactivos conocidos, también llamado semivida. Obsérve que un ligero exceso de neutrones favorece la estabilidad en átomos pesados.

La radiactividad o radioactividad[1] es un fenómeno físico por el cual algunos cuerpos o elementos químicos, llamados radiactivos, emiten radiaciones que tienen la propiedad de impresionar placas fotográficas, ionizar gases, producir fluorescencia, atravesar cuerpos opacos a la luz ordinaria, entre otros. Debido a esa capacidad, se les suele denominar radiaciones ionizantes (en contraste con las no ionizantes). Las radiaciones emitidas pueden ser electromagnéticas, en forma de rayos X o rayos gamma, o bien corpusculares, como pueden ser núcleos de helio, electrones o positrones, protones u otras. En resumen, es un fenómeno que ocurre en los núcleos de ciertos elementos, inestables, que son capaces de transformarse, o decaer, espontáneamente, en núcleos atómicos de otros elementos más estables.

La radiactividad ioniza el medio que atraviesa.Una excepción lo constituye el neutrón, que no posee carga, pero ioniza la materia en forma indirecta. En las desintegraciones radiactivas se tienen varios tipos de radiación: alfa, beta, gamma y neutrones.

La radiactividad es una propiedad de los isótopos que son "inestables", es decir, que se mantienen en un estado excitado en sus capas electrónicas o nucleares, con lo que, para alcanzar su estado fundamental, deben perder energía. Lo hacen en emisiones electromagnéticas o en emisiones de partículas con una determinada energía cinética. Esto se produce variando la energía de sus electrones (emitiendo rayos X) o de sus nucleones (rayo gamma) o variando el isótopo (al emitir desde el núcleo electrones, positrones, neutrones, protones o partículas más pesadas), y en varios pasos sucesivos, con lo que un isótopo pesado puede terminar convirtiéndose en uno mucho más ligero, como el uranio que, con el transcurrir de los siglos, acaba convirtiéndose en plomo.

La radiactividad se aprovecha para la obtención de energía nuclear, se usa en medicina (radioterapia y radiodiagnóstico) y en aplicaciones industriales (medidas de espesores y densidades, entre otras).

La radiactividad puede ser:

  • Natural: manifestada por los isótopos que se encuentran en la naturaleza.
  • Artificial o inducida: manifestada por los radioisótopos producidos en transformaciones artificiales.

Contenido

Radiactividad natural

Véanse también: Radiactividad natural, Rayos cósmicos y Redradna

En 1896 Henri Becquerel descubrió que ciertas sales de uranio emiten radiaciones espontáneamente, al observar que velaban las placas fotográficas envueltas en papel negro. Hizo ensayos con el mineral en caliente, en frío, pulverizado, disuelto en ácidos y la intensidad de la misteriosa radiación era siempre la misma. Por tanto, esta nueva propiedad de la materia, que recibió el nombre de radiactividad, no dependía de la forma física o química en la que se encontraban los átomos del cuerpo radiactivo, sino que era una propiedad que radicaba en el interior mismo del átomo.

El estudio del nuevo fenómeno y su desarrollo posterior se debe casi exclusivamente al matrimonio de Marie y Pierre Curie, quienes encontraron otras sustancias radiactivas: el torio, el polonio y el radio. La intensidad de la radiación emitida era proporcional a la cantidad de uranio presente, por lo que Marie Curie dedujo que la radiactividad es una propiedad atómica. El fenómeno de la radiactividad se origina exclusivamente en el núcleo de los átomos radiactivos. Se cree que se origina debido a la interacción neutrón-protón. Al estudiar la radiación emitida por el radio, se comprobó que era compleja, pues al aplicarle un campo magnético parte de ella se desviaba de su trayectoria y otra parte no.

Pronto se vio que todas estas reacciones provienen del núcleo atómico que describió Ernest Rutherford en 1911, quien también demostró que las radiaciones emitidas por las sales de uranio pueden ionizar el aire y producir la descarga de cuerpos cargados eléctricamente.

Con el uso del neutrino, partícula descrita en 1930 por Wolfgang Pauli pero no medida sino hasta 1956 por Clyde Cowan y sus colaboradores, consiguió describirse la radiación beta.

En 1932 James Chadwick descubrió la existencia del neutrón que Pauli había predicho en 1930, e inmediatamente después Enrico Fermi descubrió que ciertas radiaciones emitidas en fenómenos no muy comunes de desintegración son en realidad neutrones.

Radiactividad artificial

La radiactividad artificial, también llamada radiactividad inducida, se produce cuando se bombardean ciertos núcleos estables con partículas apropiadas. Si la energía de estas partículas tiene un valor adecuado, penetran el núcleo bombardeado y forman un nuevo núcleo que, en caso de ser inestable, se desintegra después radiactivamente. Fue descubierta por los esposos Jean Frédéric Joliot-Curie e Irène Joliot-Curie, bombardeando núcleos de boro y de aluminio con partículas alfa. Observaron que las sustancias bombardeadas emitían radiaciones después de retirar el cuerpo radiactivo emisor de las partículas de bombardeo.

En 1934 Fermi se encontraba en un experimento bombardeando núcleos de uranio con los neutrones recién descubiertos. En 1938, en Alemania, Lise Meitner, Otto Hahn y Fritz Strassmann verificaron los experimentos de Fermi. En 1939 demostraron que una parte de los productos que aparecían al llevar a cabo estos experimentos era bario. Muy pronto confirmaron que era resultado de la división de los núcleos de uranio: la primera observación experimental de la fisión. En Francia, Jean Frédéric Joliot-Curie descubrió que, además del bario, se emiten neutrones secundarios en esa reacción, lo que hace factible la reacción en cadena.

También en 1932, Mark Oliphant teorizó sobre la fusión de núcleos ligeros (de hidrógeno), y poco después Hans Bethe describió el funcionamiento de las estrellas con base en este mecanismo.

El estudio de la radiactividad permitió un mayor conocimiento de la estructura del núcleo atómico y de las partículas subatómicas. Se abrió la posibilidad de convertir unos elementos en otros. Incluso se hizo realidad el ancestral sueño de los alquimistas de crear oro a partir de otros elementos... aunque en términos prácticos no resulte rentable.

Clases y componentes de la radiación

Clases de radiación ionizante y cómo detenerla.
Las partículas alfa (núcleos de helio) se detienen al interponer una hoja de papel. Las partículas beta (electrones y positrones) no pueden atravesar una capa de aluminio. Sin embargo, los rayos gamma (fotones de alta energía) necesitan una barrera mucho más gruesa, y los más energéticos pueden atravesar el plomo.

Se comprobó que la radiación puede ser de tres clases diferentes, conocidas como partículas, desintegraciones y radiación:

  1. Partícula alfa: Son flujos de partículas cargadas positivamente compuestas por dos neutrones y dos protones (núcleos de helio). Son desviadas por campos eléctricos y magnéticos. Son poco penetrantes, aunque muy ionizantes. Son muy energéticas. Fueron descubiertas por Rutherford, quien hizo pasar partículas alfa a través de un fino cristal y las atrapó en un tubo de descarga. Este tipo de radiación la emiten núcleos de elementos pesados situados al final de la tabla periódica (A >100). Estos núcleos tienen muchos protones y la repulsión eléctrica es muy fuerte, por lo que tienden a obtener N aproximadamente igual a Z, y para ello se emite una partícula alfa. En el proceso se desprende mucha energía, que se convierte en la energía cinética de la partícula alfa, por lo que estas partículas salen con velocidades muy altas.
  2. Desintegración beta: Son flujos de electrones (beta negativas) o positrones (beta positivas) resultantes de la desintegración de los neutrones o protones del núcleo cuando éste se encuentra en un estado excitado. Es desviada por campos magnéticos. Es más penetrante, aunque su poder de ionización no es tan elevado como el de las partículas alfa. Por lo tanto, cuando un átomo expulsa una partícula beta, su número atómico aumenta o disminuye una unidad (debido al protón ganado o perdido). Existen tres tipos de radiación beta: la radiación beta-, que consiste en la emisión espontánea de electrones por parte de los núcleos; la radiación beta+, en la que un protón del núcleo se desintegra y da lugar a un neutrón, a un positrón o partícula Beta+ y un neutrino, y por último la captura electrónica que se da en núcleos con exceso de protones, en la cual el núcleo captura un electrón de la corteza electrónica, que se unirá a un protón del núcleo para dar un neutrón.
  3. Radiación gamma: Se trata de ondas electromagnéticas. Es el tipo más penetrante de radiación. Al ser ondas electromagnéticas de longitud de onda corta, tienen mayor penetración y se necesitan capas muy gruesas de plomo u hormigón para detenerlas. En este tipo de radiación el núcleo no pierde su identidad, sino que se desprende de la energía que le sobra para pasar a otro estado de energía más baja emitiendo los rayos gamma, o sea fotones muy energéticos. Este tipo de emisión acompaña a las radiaciones alfa y beta. Por ser tan penetrante y tan energética, éste es el tipo más peligroso de radiación.

Las leyes de desintegración radiactiva, descritas por Frederick Soddy y Kasimir Fajans, son:

  • Cuando un átomo radiactivo emite una partícula alfa, la masa del átomo (A) resultante disminuye en 4 unidades y el número atómico (Z) en 2.
  • Cuando un átomo radiactivo emite una partícula beta, el número atómico (Z) aumenta o disminuye en una unidad y la masa atómica (A) se mantiene constante.
  • Cuando un núcleo excitado emite radiación gamma, no varía ni su masa ni su número atómico: sólo pierde una cantidad de energía (donde "h" es la constante de Planck y "ν" es la frecuencia de la radiación emitida).

Las dos primeras leyes indican que, cuando un átomo emite una radiación alfa o beta, se transforma en otro átomo de un elemento diferente. Este nuevo elemento puede ser radiactivo y transformarse en otro, y así sucesivamente, con lo que se generan las llamadas series radiactivas.

Causa de la radiactividad

En general son radiactivas las sustancias que no presentan un balance correcto entre protones o neutrones, tal como muestra el gráfico en la siguiente pagina. Cuando el número de neutrones es excesivo o demasiado pequeño respecto al número de protones, se hace más difícil que la fuerza nuclear fuerte debida al efecto del intercambio de piones pueda mantenerlos unidos. Eventualmente, el desequilibrio se corrige mediante la liberación del exceso de neutrones o protones, en forma de partículas α que son realmente núcleos de helio, y partículas β, que pueden ser electrones o positrones. Estas emisiones llevan a dos tipos de radiactividad, ya mencionados:

  • Radiación α, que aligera los núcleos atómicos en 4 unidades másicas, y cambia el número atómico en dos unidades.
  • Radiación β, que no cambia la masa del núcleo, ya que implica la conversión de un protón en un neutrón o viceversa, y cambia el número atómico en una sola unidad (positiva o negativa, según si la partícula emitida es un electrón o un positrón).

La radiación, por su parte, se debe a que el núcleo pasa de un estado excitado de mayor energía a otro de menor energía, que puede seguir siendo inestable y dar lugar a la emisión de más radiación de tipo α, β o γ. La radiación γ es, por tanto, un tipo de radiación electromagnética muy penetrante, ya que tiene una alta energía por fotón emitido.

Símbolo

Símbolo utilizado tradicionalmente para indicar la presencia de radiactividad.
Nuevo símbolo de advertencia de radiactividad adoptado por la ISO en 2007 para fuentes que puedan resultar peligrosas. Estandard ISO #21482.

El 15 de marzo de 1994, la Agencia Internacional de la Energía Atómica (AIEA) dio a conocer un nuevo símbolo de advertencia de radiactividad con validez internacional. La imagen fue probada en 11 países.

Contador Geiger

Un contador Geiger es un instrumento que permite medir la radiactividad de un objeto o lugar. Cuando una partícula radiactiva se introduce en un contador Geiger, produce un breve impulso de corriente eléctrica. La radiactividad de una muestra se calcula por el número de estos impulsos. Está formado, normalmente, por un tubo con un fino hilo metálico a lo largo de su centro. El espacio entre ellos está aislado y relleno de un gas, y con el hilo a unos 1000 voltios relativos con el tubo. Un ion o electrón penetra en el tubo (o se desprende un electrón de la pared por los rayos X o gamma) desprende electrones de los átomos del gas y que, debido al voltaje positivo del hilo central, son atraídos hacia el hilo. Al hacer esto ganan energía, colisionan con los átomos y liberan más electrones, hasta que el proceso se convierte en un alud que produce un pulso de corriente detectable. Relleno de un gas adecuado, el flujo de electricidad se para por sí mismo o incluso el circuito eléctrico puede ayudar a pararlo. Al instrumento se le llama un "contador" debido a que cada partícula que pasa por él produce un pulso idéntico, permitiendo contar las partículas (normalmente de forma electrónica) pero sin decirnos nada sobre su identidad o su energía (excepto que deberán tener energía suficiente para penetrar las paredes del contador). Los contadores de Van Allen estaban hechos de un metal fino con conexiones aisladas en sus extremos.

Periodo de semidesintegración radiactiva

La desintegración radiactiva se comporta en función de la ley de decaimiento exponencial:

N(t) = N0e − λt,

donde:

  • N(t) es el número de radionúclidos existentes en un instante de tiempo t.
  • N0 es el número de radionúclidos existentes en el instante inicial t = 0.
  • λ, llamada constante de desintegración radiactiva, es la probabilidad de desintegración por unidad de tiempo. A partir de la definición de actividad (ver Velocidad de desintegración), es evidente que la constante de desintegración es el cociente entre el número de desintegraciones por segundo y el número de átomos radiactivos (\lambda = A/N \,\!).

Se llama tiempo de vida o tiempo de vida media de un radioisótopo el tiempo promedio de vida de un átomo radiactivo antes de desintegrarse. Es igual a la inversa de la constante de desintegración radiactiva (\tau = 1/\lambda \,\!).

Al tiempo que transcurre hasta que la cantidad de núcleos radiactivos de un isótopo radiactivo se reduzca a la mitad de la cantidad inicial se le conoce como periodo de semidesintegración, período, semiperiodo, semivida o vida media (no confundir con el ya mencionado tiempo de vida) (T_{1/2} = ln(2)/\lambda \,\!). Al final de cada período, la radiactividad se reduce a la mitad de la radiactividad inicial. Cada radioisótopo tiene un semiperiodo característico, en general diferente del de otros isótopos.

Ejemplos:

Isótopo Periodo Emisión
Uranio-238 4510 millones de años Alfa
Carbono-14 5730 años Beta
Cobalto-60 5,271 años Gamma
Radón-222 3,82 días Alfa

Velocidad de desintegración

La velocidad de desintegración o actividad radiactiva se mide en Bq, en el SI. Un becquerel vale 1 desintegración por segundo. También existen otras unidades: el rutherford, que equivale a 106 desintegraciones por segundo, o el curio, Ci, que equivale idénticamente a 3,7·1010 desintegraciones por segundo (unidad basada en la actividad de 1 g de 226Ra que es cercana a esa cantidad).

La velocidad de desintegración es la tasa de variación del número de núcleos radiactivos por unidad de tiempo:

A(t) = -\frac{dN(t)}{dt}

Dada la ley de desintegración radiactiva que sigue N(t) (ver Periodo de semidesintegración), es evidente que:

A(t) = - \left(-\lambda N_0\right) e^{-\lambda t} = A_0 e^{-\lambda t},

donde:

  • A(t) \,\! es la actividad radiactiva en el instante t \,\!.
  • A_0 \,\! es la actividad radiactiva inicial (cuando t=0 \,\!).
  • e\,\! es la base de los logaritmos neperianos.
  • t\,\! es el tiempo transcurrido.
  • \lambda \,\! es la constante de desintegración radiactiva propia de cada radioisótopo.

La actividad también puede expresarse en términos del número de núcleos a partir de su propia definición. En efecto:

A(t) = - \left(-\lambda N_0\right) e^{-\lambda t} = \lambda N(t)

Ley de la radiosensibilidad

La ley de la radiosensibilidad (también conocida como ley de Bergonié y Tribondeau, postulada en 1906) dice que los tejidos y órganos más sensibles a las radiaciones son los menos diferenciados y los que exhiben alta actividad reproductiva.

Como ejemplo, tenemos:

  1. Tejidos altamente radiosensibles: epitelio intestinal, órganos reproductivos (ovarios, testículos), médula ósea, glándula tiroides.
  2. Tejidos medianamente radiosensibles: tejido conectivo.
  3. Tejidos poco radiosensibles: neuronas, hueso.

Consecuencias para la salud de la exposición a las radiaciones ionizantes

Los efectos de la radiactividad sobre la salud son complejos. Dependen de la dosis absorbida por el organismo. Como no todas las radiaciones tienen la misma nocividad, se multiplica cada radiación absorbida por un coeficiente de ponderación para tener en cuenta las diferencias. Esto se llama dosis equivalente, que se mide en sieverts (Sv), ya que el becquerel, para medir la peligrosidad de un elemento, erróneamente considera idénticos los tres tipos de radiaciones (alfa, beta y gamma). Una radiación alfa o beta es relativamente poco peligrosa fuera del cuerpo. En cambio, es extremadamente peligrosa cuando se inhala. Por otro lado, las radiaciones gamma son siempre dañinas, puesto que se neutralizan con dificultad.

Véase también: Radiación ionizante

Riesgos para la salud

El riesgo para la salud no sólo depende de la intensidad de la radiación y de la duración de la exposición, sino también del tipo de tejido afectado y de su capacidad de absorción. Por ejemplo, los órganos reproductores son 20 veces más sensibles que la piel.

Véase también: Contaminación radiactiva

Dosis aceptable de irradiación

Hasta cierto punto, las radiaciones naturales (emitidas por el medio ambiente) son inofensivas. El promedio de tasa de dosis equivalente medida a nivel del mar es de 0,00012 mSv/h (0,012 mrem/h).

La dosis efectiva (suma de las dosis recibida desde el exterior del cuerpo y desde su interior) que se considera que empieza a producir efectos en el organismo de forma detectable es de 100 mSv (10 rem) en un periodo de 1 año.[2]

Los métodos de reducción de la dosis son: 1) reducción del tiempo de exposición, 2) aumento del blindaje y 3) aumento de la distancia a la fuente radiante.

A modo de ejemplo, se muestran las tasas de dosis en la actualidad utilizadas en una central nuclear para establecer los límites de permanencia en cada zona, el personal que puede acceder a ellas y su señalización:

Zona Dosis
Zona gris o azul de 0,0025 a 0,0075 mSv/h
Zona verde de 0,0075 a 0,025 mSv/h
Zona amarilla de 0,025 a 1 mSv/h
Zona naranja de 1 a 100 mSv/h
Zona roja > 100 mSv/h

Dosis efectiva permitida

La dosis efectiva es la suma ponderada de dosis equivalentes en los tejidos y órganos del cuerpo procedentes de irradiaciones internas y externas. En la Unión Europea, la Directiva 96/29/EURATOM limita la dosis efectiva para trabajadores expuestos a 100 mSv durante un período de cinco años consecutivos, con una dosis efectiva máxima de 50 mSv en cualquier año, y existen otros límites concretos de dosis equivalentes en determinadas zonas del cuerpo, como el cristalino, la piel o las extremidades, además de límites concretos para mujeres embarazadas o lactantes. Para la población general, el límite de dosis efectiva es de 1 mSv por año, aunque en circunstancias especiales puede permitirse un valor de dosis efectiva más elevado en un único año, siempre que no se sobrepasen 5 mSv en cinco años consecutivos.[3]

En el caso de intervenciones (emergencias radiológicas), sin embargo, estos límites no son aplicables. En su lugar se recomienda que, cuando puedan planificarse las acciones, se utilicen niveles de referencia. En estos casos, las actuaciones comienzan cuando la dosis al público puede superar los 10 mSv en dos días (permanencia en edificios). En cuanto a los trabajadores, se intentará que la dosis que reciban sea siempre inferior al límite anual, salvo en medidas urgentes (rescate de personas, situaciones que evitarían una dosis elevada a un gran número de personas, impedir situaciones catastróficas). En estos casos se intentará que no se supere el doble del límite de dosis en un solo año (100 mSv), excepto cuando se trate de salvar vidas, donde se pondrá empeño en mantener las dosis por debajo de 10 veces ese límite (500 mSv). Los trabajadores que participen en acciones que puedan alcanzar este nivel de 500 mSv deberán ser informados oportunamente y deberán ser voluntarios.[4]

La dosis efectiva es una dosis acumulada. La exposición continua a las radiaciones ionizantes se considera a lo largo de un año, y tiene en cuenta factores de ponderación que dependen del órgano irradiado y del tipo de radiación de que se trate.

La dosis efectiva permitida para alguien que trabaje con radiaciones ionizantes (por ejemplo, en una central nuclear o en un centro médico) es de 100 mSv en un periodo de 5 años, y no se podrán superar en ningún caso los 50 mSv en un mismo año. Para las personas que no trabajan con radiaciones ionizantes, este límite se fija en 1 mSv al año. Estos valores se establecen por encima del fondo natural (que en promedio es de 2,4 mSv al año en el mundo).

Las diferencias en los límites establecidos entre trabajadores y otras personas se deben a que los trabajadores reciben un beneficio directo por la existencia de la industria en la que trabajan, y por tanto, asumen un mayor riesgo que las personas que no reciben un beneficio directo.

Por ese motivo, para los estudiantes se fijan límites algo superiores a los de las personas que no trabajan con radiaciones ionizantes, pero algo inferiores a los de las personas que trabajan con radiaciones ionizantes. Para ellos se fija un límite de 6 mSv en un año.

Además, esos límites se establecen en función de ciertas hipótesis, como es la del comportamiento lineal sin umbral de los efectos de las radiaciones ionizantes sobre la salud (el modelo LNT). A partir de este modelo, basado en medidas experimentales (de grandes grupos de personas expuestas a las radiaciones, como los supervivientes de Hiroshima y Nagasaki) de aparición de cáncer, se establecen límites de riesgo considerado aceptable, consensuados con organismos internacionales tales como la Organización Internacional del Trabajo (OIT), y a partir de esos límites se calcula la dosis efectiva resultante.

Véase también: Modelo lineal sin umbral

Ejemplos de isótopos radiactivos naturales

Ejemplos de isótopos radiactivos artificiales

Véase también

Referencias

Enlaces externos


Wikimedia foundation. 2010.

Игры ⚽ Нужно сделать НИР?
Sinónimos:

Mira otros diccionarios:

  • radiactividad — f. fís. Propiedad que poseen ciertos cuerpos de desintegrarse lentamente, emitiendo partículas y rayos electromagnéticos. Medical Dictionary. 2011. radiactividad …   Diccionario médico

  • radiactividad — sustantivo femenino 1. (no contable) Área: física Propiedad que tienen los núcleos de ciertos elementos químicos de emitir radiaciones cuando se desintegran: La radiactividad de algunas sustancias tarda miles de años en desaparecer …   Diccionario Salamanca de la Lengua Española

  • radiactividad — → radiactivo …   Diccionario panhispánico de dudas

  • radiactividad — f. Fís. Propiedad de ciertos cuerpos cuyos átomos, al desintegrarse espontáneamente, emiten radiaciones. Su unidad de medida en el Sistema Internacional es el becquerel …   Diccionario de la lengua española

  • radiactividad — ► sustantivo femenino FÍSICA Cualidad de radiactivo: ■ la radiactividad de la central nuclear afectó al ecosistema. TAMBIÉN radioactividad * * * radiactividad f. Fís. Actividad de los cuerpos radiactivos, o sea, de ciertos elementos pesados, como …   Enciclopedia Universal

  • radiactividad — {{#}}{{LM R32636}}{{〓}} {{[}}radiactividad{{]}} ‹ra·diac·ti·vi·dad› (también {{◎}}radioactividad{{ ̄}}) {{《}}▍ s.f.{{》}} Propiedad de algunos elementos cuyos átomos se desintegran espontáneamente …   Diccionario de uso del español actual con sinónimos y antónimos

  • Radiactividad natural — Saltar a navegación, búsqueda Se denomina radiactividad natural a aquella radiactividad que existe en la naturaleza sin que haya existido intervención humana. Su descubridor fue Henri Becquerel en 1896. Puede provenir de dos fuentes: Materiales… …   Wikipedia Español

  • radiactividad — s f Radioactividad …   Español en México

  • radiactividad — Sinónimos: ■ irradiación, radiación, energía …   Diccionario de sinónimos y antónimos

  • Marie Curie — Nacimiento …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”