Grupo especial unitario

Grupo especial unitario

En matemáticas, el grupo especial unitario (o grupo unitario especial) de grado n es el grupo de matrices unitarias n por n con determinante igual a 1, con las entradas en el cuerpo C de los números complejos y con la operación de grupo dada por la multiplicación de matrices. Se escribe como SU(n). Es un subgrupo del grupo unitario U(n), a su vez un subgrupo del grupo general lineal GL(n, C). De ahora en adelante, asumiremos n ≥ 2.

Contenido

Propiedades

El grupo unitario especial SU(n) es un grupo de Lie real de dimensión n²-1. Es compacto, conexo, simplemente conexo, y (para n ≥ 2) simple y semisimple. Su centro es el grupo cíclico Z n. Su grupo de automorfismos exteriores para n ≥ 3 es Z2. El grupo de automorfismos exteriores de SU(2) es el grupo trivial.

El álgebra de Lie que corresponde a SU(n) se denota por \mathfrak{su}(n), dicha álgebra se puede representar por las matrices complejas n ×n antihermitianas de traza nula, con el conmutador como corchete de Lie. Obsérvese que esta es un álgebra de Lie real y no compleja.

El grupo SU(2)

El grupo especial unitario de segundo orden, SU(2), es una variedad diferenciable de dimensión 3, que puede ser identificada homeomórficamente con el conjunto de matrices de coeficientes complejos unitarias y de determinante 1.

De hecho, el grupo SU(2) es isomorfo al grupo de cuaterniones de valor absoluto 1, y es así difeomorfo a la 3-esfera. Puesto que los cuaterniones unidad se pueden utilizar para representar rotaciones en el espacio de 3 dimensiones (salvo signo), tenemos un homomorfismo sobreyectivo de los grupos de Lie SU(2) → SO(3,\R) cuyo núcleo es { + I, -I}.

Álgebra de Lie su(2)

Las matrices siguientes forman una base para \mathfrak{su}(2) sobre R:

i\sigma_x = \begin{bmatrix}
0 & i \\
i & 0 \end{bmatrix} \qquad i\sigma_y = \begin{bmatrix}
0 & 1 \\
-1 & 0 \end{bmatrix} \qquad i\sigma_z = \begin{bmatrix}
i & 0 \\
0 & -i \end{bmatrix}


(donde i es la unidad imaginaria). Este factor se presenta porque los físicos gustan de incluir un factor i en sus álgebras de Lie reales, que es una convención diferente de la de los matemáticos). Esta representación se utiliza a menudo en mecánica cuántica (véase las matrices de Pauli), para representar el espín de partículas fundamentales tales como electrones. También sirven como vectores unidad para la descripción de nuestras 3 dimensiones espaciales en relatividad cuántica.

Obsérvese que el producto de cualesquiera dos diversos generadores es otro generador, y que los generadores anticommutan. Junto con la matriz identidad (multiplicada por i),

 iI_2 = \begin{bmatrix}
i & 0 \\
0 & i \end{bmatrix}

son también generadores del álgebra de Lie \mathfrak{u}(2).

Aplicaciones

Topológicamente es el espacio recubridor universal del grupo de rotaciones tridimensional SO(3). Debido a que el grupo de rotaciones tridimensionales está físicamente relacionada con el momento angular y el espín de una partícula, y debido a la propiedad recubridora de SU(2), hace que SU(2) sea uno de los grupos matemáticos que con mayor frecuencia aparece en mecánica cuántica, en conexión con problemas de espín.

Igualmente en teoría cuántica de campos algunas simetrías internas de los campos físicos, presentan invariancia bajo transformaciones del grupo SU(2), por lo que también en esa área aprece con frecuencia dicho grupo. En particular el isospín es una magnitud física conservada en interacciones invariantes bajo el grupo SU(2) de aroma.

El grupo SU(3)

Es un grupo de Lie de dimensión 8. En cuanto a las aplicaciones el grupo es importante en física donde este grupo es el grupo de simetría de teorías físicas fundamentales como la cromodinámica cuántica que describe la Interacción nuclear fuerte que es la teoría que explica tanto la estructura interna de protones y neutrones como de explicar la estabilidad de los núcleos atómicos.

Álgebra de Lie su(3)

El análogo de las matrices de Pauli para el álgebra \mathfrak{su}(3) son las matrices de Gell-Mann:

\lambda_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}
\lambda_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \lambda_5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \lambda_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}
\lambda_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \lambda_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}

Es común tomar como base de generadores de \mathfrak{su}(3) las matrices T definidas por la relación:

T_a = \frac{\lambda_a}{2}\;

Estos generadores satisfacen las relaciones de conmutación:

  • \left[T_a, T_b \right] = i \sum_{c=1}^8{f_{abc} T_c} \,

Donde f son las constantes de estructura y sus valores vienen dados por:

f^{123} = 1 \,
f^{147} = f^{165} = f^{246} = f^{257} = f^{345} = f^{376} = \frac{1}{2} \,
f^{458} = f^{678} = \frac{\sqrt{3}}{2} \,

Además al igual que las matrices de Pauli son matrices de traza nula, es decir, \operatorname{tr}(T_a) = 0 \,

El grupo SU(4)

Es un grupo de Lie de dimensión . En cuanto a las aplicaciones el grupo es importante en físca donde este grupo es parte del grupo de simetria de las teorías similares a la teoría de Patti Sallam, este grupo representa en el modelo de Patti-Sallam la interaccion fuerte y la electromagnetica.

Álgebra de Lie su(4)

Los general:

\lambda_1 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \lambda_2 = \begin{pmatrix} 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \lambda_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
\lambda_4 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \lambda_5 = \begin{pmatrix} 0 & 0 & -i & 0 \\ 0 & 0 & 0 & 0 \\ i & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \lambda_6 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}
\lambda_7 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -i & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \lambda_9 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \lambda_{10} = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix}
\lambda_8 = \frac{1}{\sqrt{3}}  \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \lambda_{11} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \lambda_{12} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -i \\ 0 & 0 & 0 & 0 \\ 0 & i & 0 & 0 \end{pmatrix}
\lambda_{13} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \lambda_{14} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \end{pmatrix} \lambda_{15} = \frac{1}{\sqrt{6}}  \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -3 \end{pmatrix}

El grupo SU(N)


Wikimedia foundation. 2010.

Игры ⚽ Поможем написать курсовую

Mira otros diccionarios:

  • Grupo especial unitario — En matemáticas, el grupo especial unitario de grado n es el grupo de matrices unitarias n por n con las entradas en el cuerpo C de los números complejos, con la operación de grupo dada por la multiplicación de matrices. Se escribe como SU(n). Es… …   Enciclopedia Universal

  • Grupo especial ortogonal — El grupo especial ortogonal (o grupo ortonormal especial), abreviado usualmente , es un grupo de Lie que puede ser representado como un subgrupo del grupo ortogonal . El grupo real SO(n) se puede identificar con el grupo de rotaciones del espacio …   Wikipedia Español

  • Grupo — (del italiano gruppo), la pluralidad de elementos que forman un conjunto, puede hacer referencia a: Contenido 1 En matemáticas 2 En astronomía 3 En física …   Wikipedia Español

  • Grupo unitario — En matemáticas, el grupo unitario UK(n) de grado n, es el grupo de matrices unitarias (de n x n) cuyas componentes pertenecen al cuerpo K. Estas matrices, con la operación de grupo dada por la multiplicación de matrices. (Usualmente el cuerpo K… …   Wikipedia Español

  • Grupo de Lie — Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas. Puedes añadirlas así o avisar …   Wikipedia Español

  • Grupo circular — El grupo circular o U(1) es el conjunto de puntos en un círculo de radio uno. Desde el punto de vista algebraico, S1, es un grupo donde la operación binaria es inducida por la multiplicación de los números complejos es decir, si entonces . Es un… …   Wikipedia Español

  • Grupo lineal general — En matemáticas, el grupo lineal general (GL) de un espacio vectorial , denotdo como , es el grupo formado por todos los isomorfismos de ese espacio. Cuando el espacio vectorial es siendo un cuerpo F (tal como o …   Wikipedia Español

  • Grupo ortogonal — En matemática, el grupo ortogonal de grado n sobre un cuerpo F (escrito como O(n, F)) es el grupo de matrices ortogonales n por n con las entradas en F, con la operación de grupo dada por la multiplicación de matrices. Éste es un subgrupo del… …   Wikipedia Español

  • Grupo discreto — En matemáticas, un grupo discreto es un grupo G, provisto con una topología discreta. Con esta topología G se convierte en un grupo topológico. Un subgrupo discreto de un grupo topológico G es un subgrupo H, cuya topología relativa es discreta.… …   Wikipedia Español

  • Partido Unitario — «unitarios» redirige aquí. Para otras acepciones, véase unitario. Partido Unitario Líder Bernardino Rivadavia Juan Lavalle José María Paz Gregorio Aráoz de Lamadrid Fundación 1816 …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”