Lógica cuántica

Lógica cuántica

En física, la lógica cuántica es el conjunto de reglas algebraicas que rigen las operaciones para combinar y los predicados para relacionar proposiciones asociadas a acontecimientos físicos que se observan a escalas atómicas.

Ejemplos de tales proposiciones son aquellas relativas al momento lineal o a la posición en el espacio de un electrón. La lógica cuántica puede considerarse como un sistema formal paralelo al cálculo proposicional de la lógica clásica, donde en esta última, las operaciones para combinar proposiciones son las conectivas lógicas y los predicados entre proposiciones son equivalencia e implicación. La lógica cuántica fue creada con el propósito de tratar matemáticamente las anomalías relativas a la medición en la mecánica cuántica. Éstas surgen por la medición simultánea de observables complementarios en escalas atómicas.

La expresión "lógica cuántica" también se refiere a la rama interdisciplinária de física, matemática, lógica y filosofía que estudia el formalismo y las bases empíricas de estas reglas algebraicas. Vale salientar que la lógica cuántica es una disciplina científica independiente y con objetivos diferentes de la informática cuántica, aunque ambas dependen, por supuesto, de la física cuántica.

Contenido

Introducción

El concepto de lógica cuántica fue propuesto originalmente por Garrett Birkhoff y John von Neumann en 1936. Tal como fue propuesto por estos autores, la lógica cuántica se fundamenta en la idea que el retículo de proyecciones ortogonales en un espacio de Hilbert es la estructura que corresponde en la mecánica cuántica al reticulado de proposiciones en la física clásica.

La lógica cuántica puede formularse como una versión modificada de la lógica proposicional. Tiene algunas propiedades que la diferencian de la lógica clásica, la más notable siendo que la propiedad distributiva

   p y (q o r) = (p y q) o (p y r) 

que es una propiedad básica en la lógica clásica, ya no es válida en la lógica cuántica.

Para explicar porqué la ley distributiva no es válida en lógica cuántica, consideremos una partícula que se desplaza sobre una recta. Sean p, q y r las proposciones siguientes:

   p = "la partícula se dirige hacia la derecha"
   q = "la partícula se encuentra en el intervalo [-1,1]"
   r = "la partícula se encuentra fuera del intervalo [-1,1]"

Entonces la proposición "q o r" es verdadera. Por lo tanto

   p y (q o r) = p

Por otro lado, las proposiciones

   p y q  
   p y r

son ambas falsas, pues cada una postula valores simultáneos de posición y momento linear con mayor exactitud de lo que seria permitido por la relación de indeterminación de Heisenberg. Por ende,

   (p y q) o (p y r) = falso

Concluimos que la ley distributiva es falsa.

La tesis que la lógica cuántica es la lógica apropiada para el raciocinio de manera general ha sido avanzada por varios filósofos y físicos. Entre los proponentes de esta tesis se encuentra el filósofo estadounidense Hilary Putnam, en por lo menos un período en su trayectoria académica. Esta tesis fue un ingrediente importante en su trabajo entitulado "¿Es empírica la lógica?" (en inglés "Is Logic Empirical?") en el cual analizó el fundamento epistemológico de las leyes de la lógica proposicional. Putnam atribuyó la idea que las anomalías asociadas a la medición cuántica surgen de anomalías en la lógica de la física misma al físico David Finkelstein.

La idea que una modificación de las reglas de la lógica seria necesaria para raciocinar correctamente con proposiciones relativas a eventos subatómicos, había existido en alguna forma con anterioridad al trabajo de Putnam. Ideas parecidas, aunque con menos proyección filosófica habían sido propuestas por el matemático George Mackey en sus estudios relacionando cuantización y la teoría de representaciones unitarias de grupos. Sin embargo, el punto de vista mas prevaleciente entre los especialistas en fundamentos de mecánica cuántica, es que la lógica cuántica no debe considerarse como un sistema de reglas la deducción. Lo que la lógica cuántica proporciona es un formalismo matemático para relacionar diversos elementos del aparataje de la mecánica cuántica, que son, a saber, observables, filtros físicos para la preparación de estados y los estados mismos. Considerados de esta forma, la lógica cuántica se asemeja más al enfoque algebráico construido a partir de las C*-algebras.

Proyecciones ortogonales como proposiciones

El enfoque hamiltoniano de la mecánica clásica está constituido por tres elementos fundamentales:

  • El conjunto de estados posibles del sistema,
  • observables, propiedades del sistema que se obtienen por procesos de medición,
  • dinámica, es decir la manera de evolución a través del tiempo de los estados.

En el caso de una partícula que se mueve en el espacio R3, el espacio de estados (también llamado espacio fásico) es el espacio R6. Los observables son funciones f con valores reales, que son definidas sobre el espacio fásico. Ejemplos de observables son las coordenadas de posición o momento lineal o la energía de una partícula. Para un sistema clásico, el valor de f(x), es decir el valor del observable f, estando el sistema en un determinado estado x, se obtiene por un proceso de medición de f. Las proposiciones concernientes al sistema clásico son creadas a partir de proposiciones básicas, como la siguiente: sean a, b números reales

  • El resultado de medir el observable f, es un valor en el intervalo [a, b].

Consideremos una partícula de masa m kilogramos que se mueve en R3, libre de fuerzas externas. Si el observable f es la energía de la partícula, entonces un ejemplo de proposición básica es la que afirma que la energía de la partícula (expresada en Julios), está en el intervalo [a, b]. Esta afirmación equivale a decir que la velocidad v (expresada en unidades de metros/segundo) satisface la desigualdad

 \sqrt{\frac{2 a}{m}} \leq |v| \leq \sqrt{\frac{2 b}{m}}

Es una consecuencia de esta definición de proposición en sistemas físicos clásicos, que la lógica correspondiente, considerada como un sistema algebraico bajo las operaciones de lógica, tiene la estructura de un álgebra de Boole. De hecho, este álgebra consiste de subconjuntos del espacio fásico. En este contexto, por lógica entendemos las reglas algebraicas que rigen las operaciones booleanas, tales como las leyes de De Morgan. Por razones de naturaleza técnica, haremos la suposición que los conjuntos pertenecientes a este álgebra son precisamente los conjuntos Boreleanos. Además de unión e intersección, el conjunto de proposiciones lleva una relación binaria de orden (es decir la relación de subconjunto) y una operación de complementación. Esta última corresponde a la negación en lógica. En términos de observables, el complemento de la proposición {fa} es {f < a}.

Podemos resumir el punto de vista clásico en la forma a siguiente:

  • El conjunto de proposiciones que se pueden afirmar de un sistema físico clásico tiene la estructura de un reticulado. Este reticulado viene equipado además con una operación de ortocomplementación. Las operaciones (binarias) de mínimo y máximo de este reticulado son respectivamente las operaciones de intersección y unión de conjuntos. La operación de ortocomplementación es el complemento en el espacio fásico. Este reticulado es además secuencialmente completo, en el sentido que toda sucesión {Ei}i de elementos del reticulado tiene un supremo

 \operatorname{sup}(\{E_i\}) = \bigcup_{i=1}^\infty E_i.

En la formulación de la mecánica cuánica en espacios de Hilbert tal como fue presentada por von Neumann, un observable se representa por un operador autoadjunto A densamente definido (y posiblemente no-acotado) sobre un cierto espacio de Hilbert. Puesto que A admite una descomposición espectral o resolución de la identidad en términos de una medida de Borel de \R (valuada sobre el conjunto de proyectores del espacio). En particular se cumple que:

 f(A) = \int_{\mathbb{R}} f(\lambda) \, d \operatorname{E}_\lambda

En este caso f es la función característica de un intervalo [a, b], y el operador f(A) es una proyección autodajunta, y puede ser interpretada como el análogo cuántico de la proposición clásica:

  • El valor de una medición de A cae en el intervalo [a, b].

El retículo de proposiciones en mecánica cuántica

Las consideraciones anteriores sugieren una estructura que corresponde en la mecánica cuántica al retículo de proposiciones en la mecánica clásica.

  • El reticulado de proposiciones de un sistema cuántico es el reticulado Q de los subespacios cerrados de un espacio de Hilbert. donde la relación de orden entre subespacios cerrados V y W es la relación de subespacio. Este reticulado está dotado además de una operación llamada de ortocomplementación. Para un subespacio V el ortocomplemento es el espacio ortogonal.

Esta afirmación es en esencia el axioma VII postulado en el libro de Mackey. En lo sucesivo, no haremos diferencia entre un subsepacio cerrado V y la proyección ortogonal sobre V. Esta identifcación se justifica por la existencia de una biyección natural entre subespacios cerrados y proyecciones ortogonales.

Tomando como punto de partida el axioma VII, procedemos a definir de una manera formal lo que es un observable y en base a esta definición establecer la correspondenica entre operadores autoadjuntos y observables. La definición es la siguiente:

Un observable según Mackey es un homomorfismo φ cuyo dominio es el retículo de conjuntos borelianos en la recta real R y el codominio es el retículo Q y que preserva límites enumerables.

Esta propiedad quiere decir que si {Si}i es una sucesión de subconjuntos borelianos de R que son disjuntos entre sí, entonces las proyecciones {φ(Si)}i son también ortogonales entre sí y vale la igualdad

 \varphi\left(\bigcup_{i=1}^\infty S_i\right) = \sum_{i=1}^\infty \varphi(S_i).

Teorema. Existe una correspondencia biunívoca entre observables en el sentido de Mackey y operadors con dominio denso autoadjuntos en el espacio de Hilbert H.

Una aplicación de este tipo, que hace corresponder un operador de proyección ortogonal a cada elemento de una σ-álgebra, es denominada medida espectral.


Referencias

  • S. Auyang, How is Quantum Field Theory Possible?, Oxford University Press, 1995.
  • G. Birkhoff and J. von Neumann, The Logic of Quantum Mechanics, vol 37, 1936.
  • D. Cohen, An Introduction to Hilbert Space and Quantum Logic, Springer-Verlag, 1989. Este libro es un estudio detallado, pero a nivel introductorio apropiado para alumnos de licenciatura que tengan buena base en física y matemática.
  • D. Finkelstein, Matter, Space and Logic, Boston Studies in the Philosophy of Science vol V, 1969
  • A. Gleason, Measures on the Closed Subspaces of a Hilbert Space, Journal of Mathematics and Mechanics, 1957.
  • R. Kadison, Isometries of Operator Algebras, Annals of Mathematics, vol 54 pp 325-338, 1951
  • G. Ludwig, Foundations of Quantum Mechanics, Springer-Verlag, 1983.
  • G. Mackey, Mathematical Foundations of Quantum Mechanics, W. A. Benjamin, 1963 (paperback reprint by Dover 2004).
  • J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press, 1955. Reprinted in paperback form.
  • R. Omnès, Understanding Quantum Mechanics, Princeton University Press, 1999. Proporciona al lector una discusión extremadamente clara de algunos temas de la lógica y de la filosofía de la mecánica cuántica, con atención a la historia de la materia.
  • N. Papanikolaou, Reasoning Formally About Quantum Systems: An Overview, ACM SIGACT News, 36(3), pp. 51-66, 2005.
  • C. Piron, Foundations of Quantum Physics, W. A. Benjamin, 1976.
  • H. Putnam, Is Logic Empirical?, Boston Studies in the Philosophy of Science vol. V, 1969
  • H. Weyl, The Theory of Groups and Quantum Mechanics, Dover Publications, 1950.

Enlaces externos


Wikimedia foundation. 2010.

Игры ⚽ Нужен реферат?

Mira otros diccionarios:

  • Lógica cuántica — El término de lógica cuántica hace referencia al conjunto de operaciones lógicas necesarias para entender las anomalías relativas a la medida de cantidas cuánticas que surgen al estudiar la física en escalas atómicas y en particular las… …   Enciclopedia Universal

  • Lógica — La lógica es una ciencia formal y una rama de la filosofía que estudia los principios de la demostración e inferencia válida. La palabra deriva del griego antiguo λογική (logike), que significa «dotado de razón, intelectual, dialéctico,… …   Wikipedia Español

  • Lógica plurivalente — Una lógica plurivalente o lógica polivalente es un sistema lógico que rechaza el principio del tercero excluido de las lógicas bivalentes y admite más valores de verdad que los tradicionales verdadero y falso.[1] Distintas lógicas plurivalentes… …   Wikipedia Español

  • ¿Es empírica la lógica? — es el título de dos artículos demostrativos que tratan sobre la posibilidad de que las propiedades algebraicas de la lógica puedan o deban determinarse a partir de hechos. En particular se cuestiona si los fenómenos cuánticos pueden servir de… …   Wikipedia Español

  • Puerta cuántica — Saltar a navegación, búsqueda Una puerta cuántica o puerta lógica cuántica es un circuito cuántico básico que opera sobre un pequeño número de qubits. Son para los ordenadores cuánticos lo que las puertas lógicas son para los ordenadores… …   Wikipedia Español

  • Interpretaciones de la mecánica cuántica — Una interpretación de la mecánica cuántica es un conjunto de afirmaciones que tratan sobre la completitud, determinismo o modo en que deben entenderse los resultados de la mecánica cuántica y los experimentos relacionados con ellas. Aunque las… …   Wikipedia Español

  • Interpretaciones de la Mecánica cuántica — Saltar a navegación, búsqueda Una interpretación de la mecánica cuántica es un conjunto de afirmaciones que tratan sobre la completitud, determinismo o modo en que deben entenderse los resultados de la mecánica cuántica y los experimentos… …   Wikipedia Español

  • Computación cuántica — La esfera de Bloch es una representación de un qubit, el bloque de construcción fundamental de los computadores cuánticos. La computación cuántica es un paradigma de computación distinto al de la computación clásica. Se basa en el uso de qubits… …   Wikipedia Español

  • Historia de la gravedad cuántica — Saltar a navegación, búsqueda Contenido 1 Las tres principales direcciones 1.1 Covariante 1.2 Canónicas 1.3 Sum …   Wikipedia Español

  • Topología cuántica — La topología cuántica es un subcampo de topología/geometría/teoría de nudos donde existen invariantes cuánticos (por ejemplo el invariante de Kontsevich) que son usados para determinar si arreglos simples (deformaciones, teoría de la deformación …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”