- Aplicaciones de la electricidad
-
Aplicaciones de la electricidad
Desde el momento histórico que se descubrió la forma de generar electricidad de forma masiva, se sucedieron una serie de descubrimientos científicos que conllevaron a la invención de un sinfín de aplicaciones prácticas de la electricidad y la fabricación masiva de muchos instrumentos y máquinas diferentes que funcionan mediante la electricidad que reciben de las redes eléctricas a las cuales se conectan con los instrumentos de control eléctrico apropiados en cada caso.
La comprensión final de la electricidad se logró recién con su unificación con el magnetismo en un único fenómeno electromagnético descripto por las ecuaciones de Maxwell (1861-1865). Su desarrollo y utilización masiva da una idea clara de las ventajas del uso la electricidad como forma de energía. Siendo su principal ventaja, lo fácil y económico que resulta su transporte, pudiendo, mediante conducciones eléctricas (cables), llevar energía a cualquier lugar, para finalmente ser transformada en energía utilizable (luz, calor, movimiento, etc.) Actualmente, (2008) la energía eléctrica se utiliza para fabricar los objetos que utilizamos, y está presente en todo tipo de actividad que podamos imaginar.
Las primeras aportaciones que se realizan sobre la electricidad que pueden entenderse como aproximaciones sucesivas al fenómeno eléctrico fueron realizadas por investigadores sistemáticos como William Gilbert, Otto von Guericke, Du Fay, Pieter van Musschenbroek (botella de Leyden) o William Watson. Las observaciones sometidas a método científico empiezan a dar sus frutos con Luigi Galvani, Alessandro Volta, Charles-Augustin de Coulomb o Benjamin Franklin, proseguidas a comienzos del siglo XIX por André-Marie Ampère, Michael Faraday o Georg Ohm. Los nombres de estos pioneros terminaron bautizando las unidades hoy utilizadas en la medida de las distintas magnitudes del fenómeno.
El telégrafo eléctrico (Samuel Morse, 1833, precedido por Gauss y Weber, 1822) puede considerarse como la primera gran aplicación en el campo de las telecomunicaciones, pero no será en la primera revolución industrial, sino a partir del cuarto final del siglo XIX que las aplicaciones económicas de la electricidad la convertirán en una de las fuerzas motrices de la segunda revolución industrial. Más que de grandes teóricos como Lord Kelvin, fue el momento de ingenieros, como Zénobe Gramme, Nikola Tesla, Frank Sprague, George Westinghouse, Ernst Werner von Siemens, Alexander Graham Bell y sobre todo Thomas Alva Edison y su revolucionaria manera de entender la relación entre investigación científico-técnica y mercado capitalista.
La electrificación no sólo fue un proceso técnico, sino un verdadero cambio social de implicaciones extraordinarias, comenzando por el alumbrado y siguiendo por todo tipo de procesos industriales (motor eléctrico, metalurgia, refrigeración...) y de comunicaciones (telefonía, radio). Pero fue sobre todo la sociedad de consumo que se creó en los países capitalistas la que dependió en mayor medida de la utilización doméstica de la electricidad en los electrodomésticos, y fue en estos países donde la retroalimentación entre ciencia, tecnología y sociedad desarrolló las complejas estructuras que permitieron los actuales sisemas de I+D e I+D+I, en que la iniciativa pública y privada se interpenetran, y las figuras individuales se difuminan en los equipos de investigación.
La energía eléctrica es esencial para la sociedad de la información de la tercera revolución industrial que se viene produciendo desde la segunda mitad del siglo XX (transistor, televisión, computación, robótica, internet...). Únicamente puede comparársele en importancia la motorización dependiente del petróleo (que también es ampliamente utilizado, como los demás combustibles fósiles, en la generación de electricidad). Ambos procesos exigieron cantidades cada vez mayores de energía, lo que está en el origen de la crisis energética y medioambiental y de la búsqueda de nuevas fuentes de energía, la mayoría con inmediata utilización eléctrica (energía nuclear y energías alternativas, dadas las limitaciones de la tradicional hidroelectricidad). Los problemas que tiene la electricidad para su almacenamiento y transporte a largas distancias, y para la autonomía de los aparatos móviles, son retos técnicos aún no resueltos de forma suficientemente eficaz.
El impacto cultural de lo que Marshall McLuhan denominó Edad de la Electricidad, que seguiría a la Edad de la Mecanización (por comparación a cómo la Edad de los Metales siguió a la Edad de Piedra), radica en la velocidad instantánea de la electricidad, que conlleva posibilidades antes inimaginables, como la simultaneidad y la división de cada proceso en una secuencia. Se impuso un cambio cultural que provenía del enfoque en "segmentos especializados de atención" (la adopción de una perspectiva particular) y la idea de la "conciencia sensitiva instantánea de la totalidad", una atención al "campo total", un "sentido de la estructura total". Se hizo evidente y prevalente el sentido de "forma y función como una unidad", una "idea integral de la estructura y configuración". Estas nuevas concepciones mentales tuvieron gran impacto en todo tipo de ámbitos científicos, educativos e incluso artísticos (por ejemplo, el cubismo). En el ámbito de lo espacial y político, "la electricidad no centraliza, sino que descentraliza... mientras que el ferrocarril requiere un espacio político uniforme, el avión y la radio permiten la mayor discontinuidad y diversidad en la organización espacial".[1]
Aplicaciones de la electricidad
Máquinas frigoríficas y aire acondicionado
La invención de las máquinas frigoríficas ha supuesto un avance importante en todos los aspectos relacionados con la conservación y trasiego de alimentos frescos que necesitan conservarse fríos para que tengan mayor duración en su estado natural. Así como conseguir una climatización adecuada de frío y calor en las viviendas y locales públicos. Las máquinas frigoríficas se clasifican en máquinas congeladoras y en máquinas refrigeradoras, las de nivel industrial están ubicadas en empresas, barcos o camiones que trabajan con alimentos congelados o refrigerados y a nivel doméstico se utilizan también máquinas frigoríficas conocidas con el nombre de frigorífico y congelador así como los aparatos de aire acondicionado que está presente en muchas viviendas variando en prestaciones y capacidad.
En 1784 William Cullen construye la primera máquina para enfriar, pero hasta 1927 no se fabrican los primeros refrigeradores domésticos (de General Electric). Cuatro años más tarde, Thomas Midgley descubre el freón, que por sus propiedades ha sido desde entonces muy empleado en máquinas de enfriamiento como equipos de aire acondicionado y refrigeradores, tanto a escala industrial como doméstica. Sin embargo, estos compuestos también conocidos como clorofluorocarburos (CFC), se han demostrado los principales causantes de la destrucción en la capa de ozono, produciendo el agujero detectado en la Antártida, por lo que en 1987 se firma el Protocolo de Montreal para restringir el uso de estos compuestos. En la actualidad (2008) todas las máquinas frigoríficas utilizan unos gases refrigerantes ecológicos[2] que no perjudican a la capa de ozono.[3]
Una máquina frigorífica es un tipo de máquina térmica generadora que transforma algún tipo de energía, habitualmente mecánica, en energía térmica para obtener y mantener en un recinto una temperatura menor a la temperatura exterior. La energía mecánica necesaria puede ser obtenida previamente a partir de otro tipo de energía, como la energía eléctrica mediante un motor eléctrico. Esta transferencia se realiza mediante un fluido frigorígeno o refrigerante, que en distintas partes de la máquina sufre transformaciones de presión, temperatura y fase (líquida o gaseosa); y que es puesto en contacto térmico con los recintos para absorber calor de unas zonas y transferirlo a otras.
Una máquina frigorífica debe contener como mínimo los cuatro siguientes elementos:
- Compresor: es el elemento que suministra energía al sistema. El refrigerante llega en estado gaseoso al compresor y aumenta su presión.
- Condensador: El condensador es un intercambiador de calor, en el que se disipa el calor absorbido en el evaporador (más adelante) y la energía del compresor. En el condensador el refrigerante cambia de fase pasando de gas a líquido.
- Sistema de expansión: el refrigerante líquido entra en el dispositivo de expansión donde reduce su presión y esta a su vez reduce bruscamente su temperatura.
- Evaporador: el refrigerante a baja temperatura y presión pasa por el evaporador, que al igual que el condensador es un intercambiador de temperatura, y absorbe el calor del recinto donde esta situado. El refrigerante líquido que entra al evaporador se transforma en gas al absorber el calor del recinto.
Tanto en el evaporador como en el condensador la transferencia energética se realiza principalmente en forma de calor latente.
Desde el punto de vista económico, el mejor ciclo de refrigeración es aquel que extrae la mayor cantidad de calor (Q2) del foco frío (T2) con el menor trabajo (W). Por ello, se define la eficiencia (que no rendimiento) de una máquina frigorífica como el cociente Q2/W:
-
- Eficiencia
- Q2: Representa el calor extraído de la máquina frigorífica por los serpentines refrigerantes situados en su interior (congelador).
- W: Es el trabajo realizado por el motor que acciona el compresor.
- Q1: Es el calor cedido a los serpentines (o radiador) refrigerantes exteriores (en la parte posterior del aparato y que se elimina al ambiente por una circulación de aire (natural o forzada con auxilio de un ventilador, caso de los aparatos de aire refrigerado).
Hay que denotar que la máquina frigorífica se puede utilizar como calentador, como bien se expone en el Ciclo de Carnot. Para ello, basta con hacer que el foco caliente sea la habitación, T1, y el frío el exterior. Es el principio de funcionamiento de la bomba de calor, que es más ventajosa de utilizar que un caldeo por resistencia eléctrica. Esta doble función de producir frío y calor se utiliza en los equipos modernos de aire acondiconado que se instalan actualmente en las viviendas.
El ingeniero francés Nicolas Léonard Sadi Carnot fue el primero que abordó el problema del rendimiento de un motor térmico
En España, todas las empresas que se dedican a las actividades relacionadas con máquinas frigoríficas y climatización se encuadran bajo el concepto de frío industrial y los profesionales dedicados a estas tareas reciben el nombre de frigoristas.[4]
Véase también: Ciclo de CarnotElectroimanes
Un electroimán es un tipo de imán en el que el campo magnético se produce mediante el flujo de una corriente eléctrica, desapareciendo en cuanto cesa dicha corriente. Fue inventado por el electricista británico William Sturgeon en 1825. Sturgeon podía regular su electroimán, lo que supuso el principio del uso de la energía eléctrica en máquinas útiles y controlables, estableciendo los cimientos para las comunicaciones electrónicas a gran escala.
El tipo más simple de electroimán es un trozo de cable enrollado. Una bobina con forma de tubo recto (parecido a un tornillo) se llama solenoide, y cuando además se curva de forma que los extremos coincidan se denomina toroide. Pueden producirse campos magnéticos mucho más fuertes si se sitúa un «núcleo» de material paramagnético o ferromagnético (normalmente hierro dulce) dentro de la bobina. El núcleo concentra el campo magnético, que puede entonces ser mucho más fuerte que el de la propia bobina.
La principal ventaja de un electroimán sobre un imán permanente es que el campo magnético puede ser rápidamente manipulado en un amplio rango controlando la cantidad de corriente eléctrica. Sin embargo, se necesita una fuente continua de energía eléctrica para mantener el campo. En aplicaciones donde no se necesita un campo magnético variable, los imanes permanentes suelen ser superiores. Adicionalmente, éstos pueden ser fabricados para producir campos magnéticos más fuertes que los electroimanes de tamaño similar.
Los electroimanes se usan en muchas situaciones en las que se necesita un campo magnético variable rápida o fácilmente. Muchas de estas aplicaciones implican la deflección de haces de partículas cargadas, como en los casos del tubo de rayos catódicos y el espectrómetro de masa.
Los electroimanes son los componentes esenciales de muchos interruptores, siendo usados en los frenos y embragues electromagnéticos de los automóviles. En algunos tranvías, los frenos electromagnéticos se adhieren directamente a los raíles. Se usan electroimanes muy potentes en grúas para levantar pesados bloques de hierro y acero, así como contenedores, y para separar magnéticamente metales en chatarrerías y centros de reciclaje. Los trenes de levitación magnética emplean poderosos electroimanes para flotar sin tocar la pista y así poder ir a grandes velocidades. Algunos trenes usan fuerzas atractivas, mientras otros emplean fuerzas repulsivas.
Los electroimanes se usan en los motores eléctricos rotatorios para producir un campo magnético rotatorio y en los motores lineales para producir un campo magnético itinerante que impulse la armadura. Aunque la plata es el mejor conductor de la electricidad, el cobre es el usado más a menudo debido a su bajo coste, y a veces se emplea aluminio para reducir el peso.
Calcular la fuerza sobre materiales ferromagnéticos es, en general, bastante complejo. Esto se debe a las líneas de campo de contorno y a las complejas geometrías. Puede simularse usando análisis de elementos finitos. Sin embargo, es posible estimar la fuerza máxima bajo condiciones específicas. Si el campo magnético está confinado dentro de un material de alta permeabilidad, como es el caso de ciertas aleaciones de acero, la fuerza máxima viene dada por:
donde:
- F es la fuerza en newtons;
- B es el campo magnético en teslas;
- A es el área de las caras de los polos en m²;
- μo es la permeabilidad del espacio libre.[5]
Véase también: Motor eléctricoElectroquímica
El área de la química que estudia la conversión entre la energía eléctrica y la energía química es la electroquímica. Los procesos electroquímicos son reacciones redox en donde la energía liberada por una reacción espontánea se transforma en electricidad, o la electricidad se utiliza para inducir una reacción química no espontánea. A este último proceso se le conoce como electrólisis.
La electrólisis consiste en la descomposición mediante una corriente eléctrica de sustancias ionizadas denominadas electrolitos. La palabra electrólisis procede de dos radicales, electro que hace referencia a electricidad, y lisis, que quiere decir ruptura. En el proceso se desprenden el oxigeno (O) y el hidrógeno (H).
Las reacciones químicas se dan en la interfase de un conductor eléctrico (llamado electrodo, que puede ser un metal o un semiconductor) y un conductor iónico (el electrolito) pudiendo ser una disolución y en algunos casos especiales, un sólido. Si una reacción química es conducida mediante un voltaje aplicado externamente, se hace referencia a una electrólisis, en cambio, si el voltaje o caída de potencial eléctrico, es creado como consecuencia de la reacción química , se conoce como un "acumulador de energía eléctrica", también llamado batería o celda galvánica.
A finales del siglo XVIII (Ilustración), el anatomista y médico italiano Luigi Galvani marcó el nacimiento de la electroquímica de forma científica al descubrir el fenómeno que ocurría, al pasar electricidad por las ancas de rana y nuevamente al tocar ambos extremos de los nervios empleando el mismo escalpelo descargado. Los aportes posteriores en la fabricación de la primera batería de la época moderna dada por Alessandro Volta. Para mediados del siglo XIX, el modelamiento y estudio de la electroquímica, se vieron aclarados por Michael Faraday (leyes de la electrólisis) y John Daniell (pila dependiente solo de iones metálicos zinc-cobre). A partir del siglo XX, la electroquímica permitió el descubrimiento de la carga del electrón por Millikan, y el establecimiento de la moderna teoría de ácidos y bases de Brønsted. Dichas contribuciones han permitido que en la actualidad (2008) la electroquímica se emparente a temas tan diversos que van desde la electroquímica cuántica de Revaz Dogonadze o Rudolph A. Marcus, hasta las celdas fotovoltaicas y quimiluminiscencia.[6]
Véase también: ElectrólisisElectroválvulas
Una electroválvula es un dispositivo diseñado para controlar el flujo de un fluido a través de un conducto como puede ser una tubería. Es de uso muy común en los circuitos hidráulicos y neumáticos de maquinaria e instalaciones industriales.
Una electroválvula tiene dos partes fundamentales: el solenoide y la válvula. El solenoide convierte energía eléctrica en energía mecánica para actuar la válvula.
Existen varios tipos de electroválvulas. En algunas electroválvulas el solenoide actúa directamente sobre la válvula proporcionando toda la energía necesaria para su movimiento. Es corriente que la válvula se mantenga cerrada por la acción de un muelle y que el solenoide la abra venciendo la fuerza del muelle.
También es posible construir electroválvulas biestables que usan un solenoide para abrir la válvula y otro para cerrar o bien un solo solenoide que abre con un impulso y cierra con el siguiente.
Las electroválvulas pueden ser cerradas en reposo o normalmente cerradas lo cual quiere decir que cuando falla la alimentación eléctrica quedan cerradas o bien pueden ser del tipo abiertas en reposo o normalmente abiertas que quedan abiertas cuando no hay alimentación.
Hay electroválvulas que en lugar de abrir y cerrar lo que hacen es controlar la entrada entre dos salidas. Este tipo de electroválvulas a menudo se usan en los sistemas de calefacción por zonas, lo que permite calentar varias zonas de forma independiente utilizando una sola bomba de circulación.
En otro tipo de electroválvula el solenoide no controla la válvula directamente sino que el solenoide controla una válvula piloto secundaria y la energía para la actuación de la válvula principal la suministra la presión del propio fluido.[7]
Véase también: SolenoideIluminación eléctrica y alumbrado
La iluminación eléctrica o alumbrado es la acción o efecto de iluminar usando electricidad, vías públicas, monumentos, autopistas, aeropuertos, recintos deportivos, etc, de las ciudades, así como la iluminación de las viviendas y especialmente la de los lugares de trabajo cuando las condiciones de luz natural no proporcionan la visibilidad adecuada.
En la técnica se refiere al conjunto de lámparas, bombillas, focos, tubos fluorecentes, entre otros, que se instalan para producir la iluminación requerida, tanto a niveles prácticos como decorativos. Con la iluminación se pretende, en primer lugar conseguir un nivel de iluminación, o iluminancia, adecuado al uso que se quiere dar al espacio iluminado, donde el nivel que dependerá de la tarea que los usuarios hayan de realizar.
La iluminación en los centros de trabajo debe prevenir que se produzca fatiga visual que se ocasiona si los lugares de trabajo y las vías de circulación no disponen de suficiente iluminación, ya sea natural o artificial, adecuada y suficiente durante la noche y cuando no sea suficiente la luz natural.[8]
Los locales, los lugares de trabajo y las vías de circulación en los que los trabajadores estén particularmente expuestos a riesgos en caso de avería de la iluminación artificial deben contar con una iluminación de seguridad de intensidad y duración suficiente. La iluminación deficiente ocasiona fatiga visual en los ojos, perjudica el sistema nervioso, ayuda a la deficiente calidad de trabajo y es responsable de una buena parte de los accidentes de trabajo.[9]
La fotometría óptica es la ciencia que se encarga de la medida de la luz como el brillo percibido por el ojo humano. Es decir, estudia la capacidad que tiene la radiación electromagnética de estimular el sistema visual. En este ámbito la iluminancia () es la cantidad de flujo luminoso emitido por una fuente de luz que incide, atraviesa o emerge de una superficie por unidad de área. Su unidad de medida en el Sistema Internacional de Unidades es el Lux: 1 Lux = 1 Lumen/m².
En general, la iluminancia se define según la siguiente expresión:
donde:
- EV es la iluminancia, medida en luxes.
- F es el flujo luminoso, en lúmenes.
- dS es el elemento diferencial de área considerado, en metros cuadrados.
La siguiente tabla recoge las principales magnitudes fotométricas, su unidad de medida y la magnitud radiométrica asociada:
Magnitud fotométrica Símbolo Unidad Abreviatura Magnitud radiométrica asociada Cantidad de luz o energía luminosa lumen•segundo lm•s Energía radiante Flujo luminoso o potencia luminosa lumen (= cd•sr) lm Flujo radiante o potencia radiante Intensidad luminosa candela cd Intensidad radiante Luminancia candela /metro2 cd /m2 Radiancia Iluminancia lux lx Irradiancia Emitancia luminosa lux lx Emitancia radiante La candela es una unidad básica del SI. Las restantes unidades fotométricas se pueden derivar de unidades básicas.
Véase también: Lámpara incandescenteProducción de calor
El físico británico James Prescott Joule descubrió en la década de 1860 que si en un conductor circula corriente eléctrica, parte de la energía cinética de los electrones se transforma en calor debido al choque que sufren con las moléculas del conductor por el que circulan, elevando la temperatura del mismo. Este efecto es conocido como efecto Joule en honor a su descubridor. Este efecto fue definido de la siguiente manera: "La cantidad de energía calorífica producida por una corriente eléctrica, depende directamente del cuadrado de la intensidad de la corriente, del tiempo que ésta circula por el conductor y de la resistencia que opone el mismo al paso de la corriente". Matemáticamente se expresa como
donde
- Q es la energía calorífica producida por la corriente;
- I es la intensidad de la corriente que circula y se mide en amperios;
- R es la resistencia eléctrica del conductor y se mide en ohmios;
- t es la tiempo el cual se mide en segundos.
Así, la potencia disipada por efecto Joule será:
donde V es la diferencia de potencial entre los extremos del conductor.
Microscópicamente el efecto Joule se calcula a través de la integral de volumen del campo eléctrico por la densidad de corriente :
La resistencia es el componente que transforma la energía eléctrica en energía calorífica. En este efecto se basa el funcionamiento de los diferentes electrodomésticos que aprovechan el calor en sus prestaciones, como braseros, las tostadoras, secador de pelo o calefacciones eléctricas; y algunos aparatos empleados industrialmente, como soldadores, así como hornos industriales, en los que el efecto útil buscado es, precisamente, el calor que desprende el conductor por el paso de la corriente. Sin embargo, en la mayoría de las aplicaciones de la electricidad es un efecto indeseado y la razón por la que los aparatos eléctricos y electrónicos necesitan un ventilador que disipe el calor generado y evite el calentamiento excesivo de los diferentes dispositivos.[10]
Véase también: ElectrodomésticoRobótica y máquinas CNC
Una de las innovaciones más importantes y trascendentales en la producción de todo tipo de objetos en la segunda mitad del siglo XX ha sido la incorporación de robots, autómatas programables y máquinas guiadas por Control numérico por computadora (CNC) en las cadenas y máquinas de producción, principalmente en tareas relacionadas con la manipulación, trasiego de objetos, procesos de mecanizado y soldadura. Estas innovaciones tecnológicas han sido viables entre otras cosas por el diseño y construcción de nuevas generaciones de motores eléctricos de corriente continua controlados mediante señales electrónicas de entrada y salida y el giro que pueden tener en ambos sentidos así como la variación de su velocidad de acuerdo con las instrucciones contenidas en el programa de ordenador que los controla. En estas máquinas se utilizan tres tipos de motores eléctricos: Motores paso a paso. Servomotores o motores encoder y motores lineales.
La robótica es una rama de la tecnología, que estudia el diseño y construcción de máquinas capaces de desempeñar tareas repetitivas, tareas en las que se necesita una alta precisión, tareas peligrosas para el ser humano o tareas irrealizables sin intervención de una máquina. Las ciencias y tecnologías de las que deriva podrían ser: el álgebra, los autómatas programables, las máquinas de estados, la mecánica, la electrónica y la informática.
Un robot se define como una entidad hecha por el hombre y una conexión de retroalimentación inteligente entre el sentido y la acción directa bajo el control de un ordenador previamente programado con las tareas que tiene que realizar. Las acciones de este tipo de robots son generalmente llevadas a cabo por motores o actuadores que mueven extremidades o impulsan al robot. Hacia 1942, Isaac Asimov da una versión humanizada a través de su conocida serie de relatos, en los que introduce por primera vez el término robótica con el sentido de disciplina científica encargada de construir y programar robots. Además, este autor plantea que las acciones que desarrolla un robot deben ser dirigidas por una serie de reglas morales, llamadas las Tres leyes de la robótica.
Los robots son usados hoy en día (2008) para llevar a cabo tareas sucias, peligrosas, difíciles, repetitivas o embotadas para los humanos. Esto usualmente toma la forma de un robot industrial usado en las líneas de producción. Otras aplicaciones incluyen la limpieza de residuos tóxicos, exploración espacial, minería, búsqueda y rescate de personas y localización de minas terrestres. La manufactura continúa siendo el principal mercado donde los robots son utilizados. En particular, robots articulados (similares en capacidad de movimiento a un brazo humano) son los más usados comúnmente. Las aplicaciones incluyen soldado, pintado y carga de maquinaria. La industria automotriz ha tomado gran ventaja de esta nueva tecnología donde los robots han sido programados para reemplazar el trabajo de los humanos en muchas tareas repetitivas. Recientemente, se ha logrado un gran avance en los robots dedicados a la medicina que utiliza robots de última generación en procedimientos de cirugía invasiva mínima. La automatización de laboratorios también es un área en crecimiento. Los robots parecen estar abaratándose y empequeñeciéndose en tamaño, todo relacionado con la miniaturización de los componentes electrónicos que se utilizan para controlarlos. También, muchos robots son diseñados en simuladores mucho antes de que sean construidos e interactúen con ambientes físicos reales.[11]
Señales luminosas
Se denomina señalización de seguridad al conjunto de señales, que referida a un objeto, actividad o situación determinadas, proporcione una indicación o una obligación relativa a la seguridad o la salud en el trabajo mediante una señal en forma de panel, un color, una señal luminosa o acústica, una comunicación verbal o una señal gestual, según proceda.
En cuanto al uso de señales luminosas las hay de dos tipos las actúan de forma intermitente y las que actúan de forma continuada. Las señales luminosas tienen el siguiente código de colores:
- Rojo: condiciones anormales que precisan de una acción inmediata del operario.
- Ámbar: atención o advertencia.
- Verde: máquina dispuesta.
- Blanco: circuito en tensión. Condiciones normales.
- Azul: cualquier significado no previsto por los colores anteriores
Cuando se utilice una señal luminosa intermitente, la duración y frecuencia de los destellos deberán permitir la correcta identificación del mensaje, evitando que pueda ser percibida como continua o confundida con otras señales luminosas.
- Semáforos
Un semáforo es un dispositivo eléctrico que regula el tráfico de vehículos y peatones en las intersecciones de vías urbanas que soporten mucho tráfico. También se utilizan semáforos en las vías de trenes paar regular el tráfico de convoyes por las vías. El tipo más frecuente tiene tres luces de colores:
- Verde, para avanzar
- Rojo, para detenerse
- Amarillo o ámbar, como paso intermedio del verde a rojo, o precaución si está intermitente.
Hasta la invención del automóvil no fue necesario, la utilización de semáforos y fue en 1914 cuando se instaló el primer semáforo eléctrico, en Cleveland, Estados Unidos. Contaba con luces rojas y verdes, colocadas sobre unos soportes con forma de brazo y además incorporaba un emisor de zumbidos.
Los semáforos han ido evolucionando con el paso del tiempo y actualmente (2008) y debido a su rentabilidad, se están utilizando lámparas a LED para la señalización luminosa, puesto que las lámparas de LED utilizan sólo 10% de la energía consumida por las lámparas incandescentes, tienen una vida estimada 50 veces superior, y por tanto generan importantes ahorros de energía y de mantenimiento, satisfaciendo el objetivo de conseguir una mayor fiabilidad y seguridad pública. Entre las mayores ventajas que tienen las señales luminosas con LED figuran: muy bajo consumo y por tanto ahorran energía. Mayor vida útil de las lámparas. Mayor seguridad operativa. Mínimo mantenimiento. Respeto por el medio ambiente. Simple recambio. Unidad óptica a prueba de luz solar. Alto contraste con luz solar. Señalización luminosa uniforme. Mayor seguridad vial.
La óptica de LED está compuesta por una placa de circuito impreso, policarbonato de protección, casquillo roscante E-27, todos estos elementos están integrados sobre un soporte cónico. El circuito impreso, policarbonato de protección y envolvente cónica, poseen orificios de ventilación para facilitar la evacuación de calor de su interior.[12]
Telecomunicaciones
El término telecomunicación fue definido por primera vez en 1932. La definición entonces aprobada del término fue: "Telecomunicación es toda transmisión, emisión o recepción, de signos, señales, escritos, imágenes, sonidos o informaciones de cualquier naturaleza por hilo, radioelectricidad, medios ópticos u otros sistemas electromagnéticos".
La base matemática sobre la que se desarrollan las telecomunicaciones fue desarrollada por el físico inglés James Clerk Maxwell. Maxwell, en el prefacio de su obra Treatise on Electricity and Magnetism (1873). Maxwell predijo que era posible propagar ondas por el espacio libre utilizando descargas eléctricas, hecho que corroboró Heinrich Hertz en 1887, ocho años después de la muerte de Maxwell, y que, posteriormente, supuso el inicio de la era de la comunicación rápida a distancia. Hertz desarrolló el primer transmisor de radio generando radiofrecuencias entre 31 MHz y 1.25 GHz.
Las telecomunicaciones, comienzan en la primera mitad del siglo XIX con el telégrafo eléctrico. Más tarde se desarrolló el teléfono, con el que fue posible comunicarse utilizando la voz, y posteriormente, la revolución de la comunicación inalámbrica: las ondas de radio. A principios del siglo XX aparece el teletipo que, utilizando el código Baudot, permitía enviar texto en algo parecido a una máquina de escribir y también recibir texto.
El auge de las telecomunicaciones empiezan cuando se sitúan en el espacio los primeros satélites de comunicaciones donde las ondas electromagnéticas se transmiten gracias a la presencia en el espacio de satélites artificiales situados en órbita alrededor de la Tierra. Un satélite actúa básicamente como un repetidor situado en el espacio: recibe las señales enviadas desde la estación terrestre y las reemite a otro satélite o de vuelta a los receptores terrestres. Los satélites son puestos en órbita mediante cohetes espaciales que los sitúan circundando la Tierra a distancias relativamente cercanas fuera de la atmósfera. Las antenas utilizadas preferentemente en las comunicaciones vía satélites son las antenas parabólicas, cada vez más frecuentes en las terrazas y tejados de nuestras ciudades. Tienen forma de parábola y la particularidad de que las señales que inciden sobre su superficie se reflejan e inciden sobre el foco de la parábola, donde se encuentra el elemento receptor.
Con la puesta en marcha de los satélites de comunicaciones ha sido posible disponer de muchos canales de televisión, el impresionante desarrollo de la telefonía móvil y de Internet. Internet es un método de interconexión descentralizada de redes de computadoras implementado en un conjunto de protocolos denominado TCP/IP y garantiza que redes físicas heterogéneas funcionen como una red lógica única, de alcance mundial. Sus orígenes se remontan a 1969, cuando se estableció la primera conexión de computadoras, conocida como ARPANET, entre tres universidades en California y una en Utah, EE. UU..
En el siglo XXI las telecomunicaciones están evolucionando hacia la interconexión global a través de múltiples dispositivos, cada vez más rápidos, compactos, potentes y multifuncionales. Ya no es necesario establecer enlaces físicos entre dos puntos para transmitir la información de un punto a otro. Los hechos ocurridos en un sitio pueden transmitirse a todo el mundo, lo que facilita las comunicaciones, el comercio globalizado y emplear nuevas técnicas de gestión como el método justo a tiempo.
Uso doméstico
El uso doméstico de la electricidad se refiere al grado de empleo que se la en los hogares a la electricidad, los principales usos son: alumbrado, electrodomésticos, calefacción y aire acondicionado. Se está investigando en producir aparatos eléctricos que tengan la mayor eficiencia energética posible, así como es necesario mejorar el acondicionamiento de los hogares en cuanto a aislamiento del exterior para disminuir el consumo de electricidad en el uso de la calefacción o del aire acondicionado que son los aparatos de mayor consumo eléctrico.
Se denominan electrodomésticos a todas las máquinas o aparatos eléctricos que realizan tareas domésticas rutinarias, como pueden ser cocinar, conservar los alimentos o limpiar, tanto para un hogar como para instituciones, comercios o industrias. Los electrodomésticos se clasifican comercialmente en tres grupos:
- La línea marrón hace referencia al conjunto de electrodomésticos de vídeo y audio, tales como televisores, reproductores de música, home cinema, etc.
- La línea blanca se refiere a los principales electrodomésticos vinculados a la cocina y limpieza del hogar. Tales como cocina, horno, lavadora, frigorífico, lavavajillas, congelador, aire acondicionado, secadora, etc.
- Los pequeños electrodomésticos son de aparatos eléctricos pequeños que se utilizan para muchas tareas diferentes como las realizadas por planchas, aspiradoras, estufas, ventiladores, microondas, cafeteras, batidoras, freidoras o depiladoras.
En los países de la Unión Europea los fabricantes de electrodomésticos están obligados a etiquetar sus productos con la llamada etiqueta energética, con el fin de contribuir al ahorro energético y a la preservación del medio ambiente.
La etiqueta energética es una herramienta informativa muy útil que indica la cantidad de energía que consume un electrodoméstico y la eficiencia con que utiliza esa energía, además de otros datos complementarios del aparato. Existen siete clases de etiquetas energéticas que se tipifican, en función de los consumos eléctricos en diferentes colores y con letras del abecedario de la A (más eficiente) hasta la G (menos eficiente). De esta manera, los usuarios pueden valorar y comparar en el mismo momento de la compra el rendimiento energético de los distintos modelos de un mismo tipo de electrodoméstico. Las comparaciones únicamente se pueden hacer entre electrodomésticos del mismo tipo: por ejemplo, no es comparable el consumo eléctrico de una lavadora de clase A con el de un lavavajillas de la misma clase, pero sí con el de otra lavadora de clase C.
La etiqueta tiene que estar siempre visible en el aparato expuesto. En los casos de ventas por catálogo, por Internet o por cualquier otro medio donde el consumidor no pueda ver los aparatos personalmente también se tienen que incluir las prestaciones energéticas descritas en la etiqueta.
Los electrodomésticos que, según la normativa comunitaria, deben llevar obligatoriamente etiqueta energética son los siguientes: frigoríficos, congeladores y aparatos combinados, lavadoras, secadoras y lava-secadoras, lavavajillas, fuentes de luz, aparatos de aire acondicionado, hornos eléctricos, calentadores de agua y otros aparatos que almacenen agua caliente.[13]
Uso industrial
El principal uso actual que tiene la electricidad es la utilidad que se hace de la misma en todo tipo de empresas e industrias en tareas muy diversas. El consumo principal de electricidad es el que tienen todas las máquinas estáticas que funcionan con motores eléctricos de potencias y tipos muy diversos.
Asimismo es significativo dotar a los centros de trabajo de la suficiente iluminación eléctrica cuando no sea posible la iluminación natural para prevenir que se produzca fatiga visual en los trabajadores que se ocasiona si los lugares de trabajo y las vías de circulación no disponen de suficiente iluminación, adecuada y suficiente durante la noche y cuando no sea suficiente la luz natural.[14]
Los locales, los lugares de trabajo y las vías de circulación en los que los trabajadores estén particularmente expuestos a riesgos en caso de avería de la iluminación artificial deben contar con una iluminación de seguridad de intensidad y duración suficiente. La iluminación deficiente ocasiona fatiga visual en los ojos, perjudica el sistema nervioso, ayuda a la deficiente calidad de trabajo y es responsable de una buena parte de los accidentes de trabajo.[15]
Otro campo general de consumo eléctrico en las empresas los constituye el dedicado a la activación de las máquinas de climatización tanto de aire acondicionado como de calefacción, el consumo de electricidad de este capítulo puede ser muy elevado si las instalaciones no están construidas de acuerdo con principios ecológicos de ahorro de energía.
Asimismo, es de uso industrial la electricidad que se emplea en los diferentes tipos de soldadura eléctrica, procesos de electrólisis, hornos eléctricos industriales utilizados en muchas tareas diferentes, entre otros.
Un campo sensible del uso de la electricidad en las empresas o instituciones lo constituyen la alimentación permanente y la tensión constante que deben tener las instalaciones de ordenadores, porque un corte imprevisto de energía eléctrica puede dañar el trabajo que se realiza en el momento del corte. Para evitar estos daños existen unos dispositivos de emergencia que palían de forma momentánea la ausencia de fluido eléctrico en la red.
Uso en el transporte
La electricidad tiene una función determinante en el funcionamiento de todo tipo de vehículos que se desplazan con ruedas y que funcionan con motores de explosión. Para producir la electricidad que necesitan los vehículos para su funcionamiento llevan incorporado un alternador pequeño que es impulsado mediante una transmisión por polea desde el eje del cigüeñal del motor. Además tienen una batería que sirve de reserva de electricidad para que sea posible el arranque del motor cuando este se encuentra parado, activando el motor de arranque. Los componentes eléctricos más importantes de un vehículo de transporte son los siguientes: alternador, batería, equipo de alumbrado, equipo de encendido, motor de arranque, equipo de señalización y emergencia, instrumentos de control, entre otros.
La sustitución de los motores de explosión por motores eléctricos es un tema aún no resuelto, debido principalmente a la escasa capacidad de las baterías y a la lentitud del proceso de carga así como a la autonomía de los automóviles. Se están realizando avances en el lanzamiento de automóviles híbridos con un doble sistema de funcionamiento, un motor de explosión térmico que carga acumuladores y unos motores eléctricos que impulsan la tracción en las ruedas.
Un campo donde ha triunfado plenamente la aplicación de la electricidad ha sido el referido al funcionamiento de los ferrocarriles de tal forma que en la actualidad prácticamente todos los ferrocarriles son eléctricos.
El proceso de electrificación se ha desarrollado en dos fases, la primera fase fue la sustitución de las locomotoras que utilizaban carbón, por las locomotoras llamadas Diésel que utilizaban combustible obtenido del petróleo. Las locomotoras diésel-eléctricas consisten básicamente en dos componentes: un motor diésel que mueve un generador eléctrico y varios motores eléctricos (conocidos como motores de tracción) que comunican a las ruedas (pares) la fuerza tractiva que mueve a la locomotora. Los motores de tracción se alimentan con corriente eléctrica y luego, por medio de engranajes , mueven las ruedas. En el caso de las locomotoras diésel no hace falta que las vías estén electrificadas, y ya se usan en casi todas las vías del mundo estén las vías electrificadas o no.
La puesta en servicio de locomotoras eléctricas directas constituyó un avance tecnológico importante. Las locomotoras eléctricas son aquellas que utilizan como fuente de energía la energía eléctrica proveniente de una fuente externa, para aplicarla directamente a motores de tracción eléctricos. Las locomotoras eléctricas requieren la instalación de cables eléctricos de alimentación a lo largo de todo el recorrido, que se sitúan a una altura por encima de los trenes a fin de evitar accidentes. Esta instalación se conoce como catenaria. Las locomotoras toman la electricidad por un trole, que la mayoría de las veces tiene forma de pantógrafo y como tal se conoce. En los años 1980 se integraron como propulsores de vehículos eléctricos ferroviarios los motores asíncronos, y aparecieron los sistemas electrónicos de regulación de potencia que dieron el espaldarazo definitivo a la elección de este tipo de tracción por las compañías ferroviarias. El hito de los trenes eléctricos lo constituyen los llamados trenes de alta velocidad cuyo desarrollo ha sido el siguiente:
- En 1964 se inauguró el Shinkansen o tren bala japonés con motivo de los Juegos Olímpicos de Tokio, el primer tren de alta velocidad en utilizar un trazado propio,
- En 1979 se instaló en Hamburgo el primer tren de levitación magnética para la Exhibición Internacional del Transporte (IVA 79), desarrollando patentes anteriores. Hubo pruebas posteriores de trenes similares en Inglaterra y actualmente operan comercialmente líneas en Japón y China. Se combinan con el sistema de monorraíl.
- En 1981 se inauguró la primera línea de Train à Grande Vitesse (Tren de Gran Velocidad), conocido como TGV, un tipo de tren eléctrico de alta velocidad desarrollado por la empresa francesa Alstom. El TGV es uno de los trenes más veloces del mundo, operando en algunos tramos a velocidades de hasta 320 km/h teniendo el récord de mayor velocidad media en un servicio de pasajeros y el de mayor velocidad en condiciones especiales de prueba. En 1990 alcanzó la velocidad de 515,3 km/h, y en el 2007 superó su propio registro al llegar a los 574,8 km/h en la línea París-Estrasburgo.[16]
Uso en la medicina
En 1895, el físico alemán Wilhelm Röntgen descubrió que, cuando los electrones que se mueven a elevada velocidad chocan con la materia, dan lugar a una forma de radiación altamente penetrante. A esta radiación se le denominó radiación X y su descubrimiento es considerado como uno de los más extraordinarios de la ciencia moderna.
Los rayos X han mostrado una gran utilidad en el campo de la Medicina, concretamente en el diagnóstico médico, porque permiten captar estructuras óseas. Por ese motivo se ha desarrollado la tecnología necesaria para su uso en medicina.
La radiología es la especialidad médica que emplea la radiografía como ayuda de diagnóstico, que es en la práctica el uso más extendido de los rayos X. En desarrollos posteriores de la radiología se desarrollaron la tomografía axial computarizada TAC y la angiografía.
Otras técnicas de imagen médica que no utilizan radiaciones, pero sí aparatos eléctricos, son la resonancia magnética nuclear (RMN), los ultrasonidos o la ecografía.
Para los trastornos coronarios, se utilizan los marcapasos, los electrocardiogramas, el corazón artificial y los desfibriladores.
Se utliza Láser de alta resolución para intervenciones de lesiones oculares.
Se han equipado los quirófanos y unidades de rehabilitación y cuidados intensivos (UVI) o (UCI) con equipos electrónicos e informáticos de alta tecnología. Se han inventado los audífonos. Asimismo la neurología y la neurofisiología utiliza nuevos equipamientos electrónicos de diagnosis y tratamiento. Se utiliza la radioterapia para tratar muchos tipos de dolencias. Se han mejorado los equipamientos que realizan análisis clínicos y se han inventado microscopios electrónicos de gran resolución.
Consumo de energía y eficiencia energética
Los aparatos eléctricos cuando están funcionando generan un consumo de energía eléctrica en función de la potencia que tengan y del tiempo que estén en funcionamiento. En España, el consumo de energía eléctrica se contabiliza mediante un dispositivo precintado que se instala en los accesos a la vivienda, denominado contador, y que cada dos meses revisa un empleado de la compañía suministradora de la electricidad anotando el consumo realizado en ese periodo de tiempo. El kilovatio hora, abreviado kWh, es la una unidad de energía en la que se factura el consumo doméstico o industrial de electricidad. Equivale a la energía consumida por un aparato eléctrico cuya potencia fuese un kilovatio (kW) y estuviese funcionando durante una hora. El desglose de una factura eléctrica correspondiente a un cliente doméstico, ubicado en Sevilla emitida por la compañía eléctrica Endesa, emitida el 26 de mayo de 2008 es el siguiente.[17]
Ejemplo de factura de consumo de energía eléctrica en un periodo de dos meses. Concepto Cálculo Valor Potencia contratada 5,5 kW x 2 mesesx 1,642355 €/(kW • mes) 18,07 € Coste consumo 966 kWh x 0,091437 €/kWh 88.33 € Impuesto electricidad 106,40 € x 1,05113 x 4,864 % 5,44 € Alquiler de contador 0,60 €/mes x 2 meses 1,20 € Impuesto valor añadido (IVA) 16% x suma anterior 18,09 € Total factura 131,13 € Dado el elevado coste de la energía eléctrica y las dificultades que existen para cubrir la demanda mundial de electricidad y el efecto nocivo para el medio ambiente que supone la producción masiva de electricidad se impone la necesidad de aplicar la máxima eficiencia energética posible en todos los usos que se haga de la energía eléctrica.
La eficiencia energética es la relación entre la cantidad de energía consumida de los productos y los beneficios finales obtenidos. Se puede lograr aumentarla mediante la implementación de diversas medidas e inversiones a nivel tecnológico, de gestión y de hábitos culturales en la comunidad.[18]
Los individuos y las organizaciones que son consumidores directos de la energía pueden desear ahorrar energía para reducir costes energéticos y promover sostenibilidad económica, política y ambiental. Los usuarios industriales y comerciales pueden desear aumentar eficacia y maximizar así su beneficio. Entre las preocupaciones actuales está el ahorro de energía y el efecto medioambiental de la generación de energía eléctrica.
El diseño de edificios debe considerar los aspectos de ahorro de energía, por ejemplo poniendo ventanales amplios mirando al sur (en el hemisferio norte) para que los días de invierno al abrir las ventanas el simple calor solar caliente los recintos, aislamiento de superficies para que no existan fugas de calor, colocación de paneles solares que aumenten la independencia de la energía eléctrica.
Un plan activo de ahorro de energía es el que se ha implantado en la Unión Europea en el sector de la vivienda y de los servicios, compuesto en su mayoría por edificios, los cuales absorben más del 40 % del consumo final de energía en la Comunidad y se encuentra en fase de expansión, tendencia que previsiblemente hará aumentar el consumo de energía y, por lo tanto, las emisiones de dióxido de carbono. Esta normativa es similar a la etiqueta energética de los electrodomésticos. La idea es construir edificios bioclimáticos encargados de aprovechar la energía del entorno.[19]
Asimismo las industrias que son grandes consumidoras de electricidad, por ejemplo, cementeras, metalúrgicas, cerámicas, etc. aplican en sus procesos de producción diversas estrategias de producción y tecnologías para reducir al máximo el consumo de electricidad.
Véase también: Categoría:Ahorro de energíaReferencias
- ↑ Marshall McLuhan (1964) Understanding Media, p.13; Reversal of the Overheated Medium, pg. 36 [1]
- ↑ Refrigerantes alternativos, cienbas.galeon.com [10-6-2008]
- ↑ Descripción de los frigoríficos gocisa.es [10-6-2008]
- ↑ Máquina frigorífica Dpto. de Máquinas y Motores Térmicos, sc.ehu.es [10-6-2008]
- ↑ Electroimnanes anser.com.ar.[19-6-2008]
- ↑ Electroquimica, electrólisis y pilas fisiacanet.com.ar [25-6-2008]
- ↑ Descripción de una electroválvula samson.de [20-6-2008]
- ↑ Instrucción Técnica Complementaria para Baja Tensión: ITC-BT-28 Instalaciones en locales de pública concurrencia INSHT Legislación [9-6-2008]
- ↑ IluminaciónJuan Guash Farrás. Enciclopedia OIT de Salud y Seguridad en el Trabajo. [9-6-2008]
- ↑ Efecto Joule Físicanet.com [18-5-2008]
- ↑ Pérez Cordero, Víctor HugoLa robótica Geocities.com [26-5-2008]
- ↑ Semáforos con LED metroight.es [12-6-2008]
- ↑ Etiquetado energético de electrodomésticos topten.wwf.es [7-6-2008]
- ↑ Instrucción Técnica Complementaria para Baja Tensión: ITC-BT-28 Instalaciones en locales de pública concurrencia INSHT Legislación [9-6-2008]
- ↑ IluminaciónJuan Guash Farrás. Enciclopedia OIT de Salud y Seguridad en el Trabajo. [9-6-2008]
- ↑ Historia de la tracción eléctrica gitel unizar.es [1-6-2008]
- ↑ Factura de la electricidad correspondiente al redactor de este aporte[23-6-2008]
- ↑ ¿Qué es la eficiencia energética? Programa País de Eficiencia Energética PPEE. Chile [10-5-2008]
- ↑ Eficiencia energética de los edificios Directiva 2002/91/CE del Parlamento Europeo y del Consejo, de 16 de diciembre de 2002, relativa a la eficiencia energética de los edificios [10-5-2008]
Véase también
Enlaces externos
Categorías: Electricidad | Aplicaciones de la electricidad
Wikimedia foundation. 2010.